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Abstract

Hardware Trojans (HTs) represent significant challenges to the security and reliability of modern microprocessor-
based systems. This manuscript introduces two complementary approaches to enhance hardware security.
First, programmable Hardware Security Modules are proposed to detect Hardware Trojan Horses by monitoring
instruction-fetch activities, identifying malicious interferences, and preventing software-exploitable Hardware
Trojan Horse activations. Second, a methodology based on side-channel analysis is proposed to verify the
integrity of FPGA bitstreams, allowing the identification of tampered configurations through the extraction and
classification of both high- and low-level features.

Figure 1: Configuration phase of the HSC [1]

Introduction & Motivation

Software-exploitable Hardware Trojan Horses (HTHs)
represent a severe threat to modern microprocessor-
based systems. These malicious modifications or ad-
ditions to circuit elements allow attackers to execute
their own software, modify running software, or ac-
quire root privileges. A real-world example is the
Rosenbridge backdoor, discovered in a commercial Via
Technologies C3 processor. This backdoor could be
activated by a specific sequence of instructions, en-
abling the attacker to gain supervisor mode privileges
[2]. This manuscript addresses the growing need for
robust hardware-based security mechanisms to pro-
tect microprocessors and FPGA-based systems against
emerging threats such as HTHs. Integrating Hardware
Security Checkers (HSCs) and side-channel analysis
techniques is proposed to tackle these challenges.

In addition to runtime protections, side-channel
analysis provides a powerful tool for verifying the
integrity of FPGA bitstreams. By analyzing high- and
low-level features, such as timing information, power
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consumption, and hardware resource utilization, side-
channel analysis enables the detection of tampered
configurations that could introduce malicious behavior
into FPGA designs.

The Hardware Security Checker
against Hardware Trojan Horses

The HSC is a component integrated between the Core
and the Main Memory [1]. In parallel with the safe
program’s installation into the Microprocessor Main
Memory, the HSC works in configure mode (Figure 1),
taking information about legitimate instructions and
their corresponding addresses (from the User-space
side). During the program(s) execution, at runtime,
the HSC switches into query mode (Figure 2) to mon-
itor the microprocessor’s fetching activity and check
whether fetched addresses and instructions match the
previously configured data. The HSC stores legiti-
mate instruction-address pairs during the configura-
tion phase by hashing these tuples. This data is then
fragmented into smaller components and stored in a
series of bit arrays. The query phase compares the
fetched instruction-address tuples against the config-
ured data, raising an alert if an anomaly is detected.
To further enhance detection capabilities, the HSC can
incorporate the Hamming computation module into
its architecture (as reported in [3]). The checking bits
are computed during the configuration phase for each
legitimate instruction. The fetched instruction’s Ham-
ming code is compared to the pre-computed values
stored in a dedicated Hamming memory at runtime.

A strategy to mitigate the activation of software-
exploitable HTHs and to protect sensitive data involves
implementing a built-in code obfuscation methodology
within the microprocessor’s execution pipeline [4]. A
dedicated hardware module manages the obfuscation
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technique, referred to as the Hardware Code Obfus-
cator (HCO), placed between the decode and execute
stages of the pipeline. This module dynamically ob-
fuscates the executed software at runtime, altering
the sequence of operations performed by the micro-
processor without changing the final outcome of the
program. By doing so, the HCO minimizes the expo-
sure of sensitive information to HTHs. It also sabo-
tages their activation mechanisms (the Rosenbridge
backdoor could be activated by a specific sequence of
instructions [2]. The obfuscation strategies include:
i) Garbage Code Insertion: Random instructions
inserted to mask patterns and inject noise; ii) textbf-
Variable Encryption/Decryption: Data are encrypted
in registers and decrypted when needed; iii) Regis-
ter Scrambling: The data are dynamically moved
between registers.

Figure 2: Query phase of the HSC [1]
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Figure 3: The workflow for detecting HTHs in FPGA [5]

Side-Channel Analysis for FPGA
Tampering

The works presented in [6, 5] propose an innovative ML-
based framework for detecting and classifying HTHs
in RISC-V cores implemented on FPGA platforms.
A central aspect of these works is the comprehen-
sive feature extraction process, which combines per-

formance features, such as runtime characteristics col-
lected through hardware performance counters, with
implementation features derived from FPGA synthesis
and implementation reports. Performance features
include metrics like the number of executed instruc-
tions, waiting cycles, and memory access patterns. In
contrast, implementation features focus on hardware
utilization (e.g., LUT and FF usage), power consump-
tion, and timing parameters, such as the worst negative
slack. The workflow is reported in Figure 3.

Table 1: Best rates and resource usage of the proposals

Ref. Acc. FP FN #LUT #FF #BRAM #LUTRAM
[1] 100% 0% 0% 75 31 8 0
[3] 100% 0% 0% 82 31 8.5 0
[4] NA NA NA 2,640 1,498 0 24
[6] 100% 0% 0% NA NA NA NA
[5] 100% 0% 0% NA NA NA NA

Conclusion

This paper presented two complementary methodolo-
gies for detecting and mitigating Hardware Trojan
Horses in microprocessor-based systems. In the first
approach, hardware security modules provide a pro-
grammable solution to monitor and verify executed
instructions or obfuscate elaborated data. The sec-
ond methodology leverages side-channel analysis with
Machine Learning techniques, enabling the detection
of compromised FPGA bitstreams by extracting and
classifying both behavioral and structural features. Ta-
ble 1 reports the best rates and resource usage details
of the proposed solutions.
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