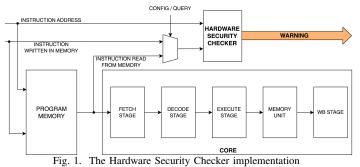
Tackling Hardware Trojan Horses via Hardware-based Methodologies



Alessandro Palumbo CentraleSupélec, Inria, CNRS, IRISA alessandro.palumbo@inria.fr

Abstract—Hardware-based approaches to detect bit-flips, unauthorized program runs, and tampering.

I. THE HARDWARE SECURITY CHECKER CONFIGURATION **Configuration**: Recording legitimate instruction-address pairs.

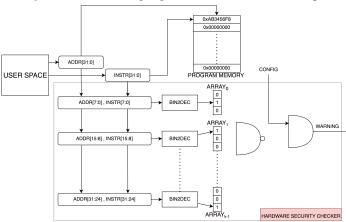


Fig. 2. Configuration phase of the Hardware Security Checker [1]

II. THE HARDWARE SECURITY CHECKER VERIFICATION **Verification**: Fetched instructions runtime verification.

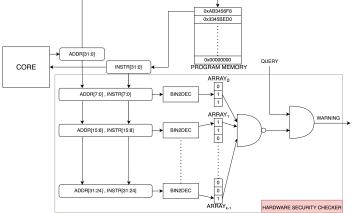


Fig. 3. Verification phase of the Hardware Security Checker [1]

TABLE I
BEST ANOMALIES DETECTION RATES AND OVERHEADS

BEST ANOMALIES DETECTION RATES AND OVERHEADS							
	References	Acc.	FP	FN	#LUT	#FF	#BRAM
	[1] Fig. 2, 3	100%	0%	0%	75 (0.49%)	31 (0.31%)	8
	[2] Fig. 4	100%	0%	0%	82 (0.53%)	31 (0.31%)	8.5
	[3] Fig. 5	100%	0%	0%	NA	NA	NA

III. THE HARDWARE SECURITY CHECKER & HAMMING Enhancing detection capabilities, integrating **Hamming code-based verification**.

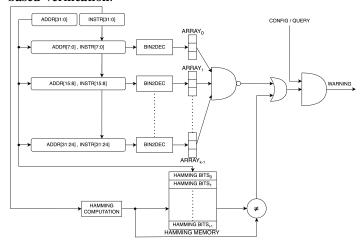


Fig. 4. Improving the Hardware Security Checker [2]

IV. DETECTING FPGA BITSTREAM TAMPERING WITH ML Integrating supply chain phases with ML-based anomaly detection for FPGA security.

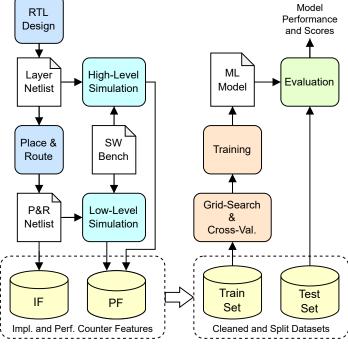


Fig. 5. The workflow for detecting FPGA tampering [3]

REFERENCES

- [1] A. Palumbo et al., "A lightweight security checking module to protect microprocessors against hardware trojan horses," in *DFT*, pp. 1–6, 2021.
- [2] A. Palumbo et al., "Improving the detection of hardware trojan horses in microprocessors via hamming codes," in *DFT*, pp. 1–6, 2023.
- [3] S. Ribes et al., "Machine learning-based classification of hardware trojans in fpgas implementing risc-v cores.," in *ICISSP*, pp. 717–724, 2024.