Detecting Microarchitectural Side-Channel
Attacks via Hardware Security Checkers

Alessandro Palumbo*

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA

Abstract

Microarchitectural Side-Channel Attacks represent significant challenges to the security and reliability of modern

microprocessor-based systems.

This manuscript introduces an approach to enhance hardware security. A

programmable Hardware Security Checker is proposed to detect Microarchitectural Side-Channel Attacks by
employing hash functions and Machine Learning algorithms to analyze runtime features, such as performance
counters, enabling the real-time detection of attack patterns.

Introduction & Motivation

Microarchitectural Side-Channel Attacks (MSCAS)
consist of malicious software capable of inferring sen-
sitive information by analyzing microprocessor fea-
tures that are seemingly unrelated to program exe-
cution. Attackers exploit timing information, power
consumption, thermal footprints, or electromagnetic
emanations of computing systems to extract sensi-
tive data [1]. This extracted information can then
be used to infer critical details about the micropro-
cessor’s operations. Notable examples of MSCAs in-
clude Spectre [2] and Meltdown [3]. Building upon
these foundational attacks, numerous other MSCAs
have been developed [1]. This manuscript addresses
the growing need for robust hardware-based security
mechanisms to protect microprocessor-based systems
against MSCAs: integrating Hardware Security Check-
ers (HSCs) into microprocessor-based systems, looking
at their features to tackle such attacks.

The HSCs monitor the runtime behavior of the mi-
croprocessor and identify attacks through the analysis
of its features and the detection of specific “attack
signatures.” Unlike software-based defenses, which can
struggle to detect circuit-level vulnerabilities or be
bypassed by attackers, HSCs operate directly at the
hardware level, making them uniquely positioned to
identify and mitigate these threats. Key features of
the proposed approaches include:

e Programmability and Flexibility: HSCs can
be reconfigured and reprogrammed after deploy-
ment to address the detection of even new attacks.

e High Accuracy and Low Overhead: The
HSCs achieve 100% detection accuracy with no
false alarm rates and no impact on the micropro-
cessor performance.

e Transparency and Efficiency: The HSCs op-
erate seamlessly with the microprocessor.

*Corresponding author: alessandro.palumbo@inria.fr

RISC-V Summit Europe, Paris, 12-15th May 2025

FETCHED INSTRUCTION
loPcoDE

Programmable Attack e
Module Unit

TIMEOUT LIMIT
OPCODE
THRESHOLD

Checking Logic:

Hash Logic

Figure 1: The CMS-based HSC structure [4]

The Hardware Security Checker

The HSC shown in Figure 1 observes the micropro-
cessor’s fetching activity, specifically focusing on in-
struction patterns and their frequencies. Leveraging a
Count-Min Sketch (CMS) probabilistic data structure,
the module estimates the occurrence frequencies of
the hash of the instructions associated with specific
attack models. These attack models, programmed
by the user, are defined in terms of recognizable pat-
terns and thresholds that must be met to classify
an activity as malicious. The system operates in a
time-window-based mode, during which it tracks all
fetched instructions and identifies suspicious activity
at the end of each window. Figure 2 shows the flow
for detecting the attacks.

A complementary design flow for creating a HSC
builds upon a machine-learning-based methodology
to enhance attack detection capabilities. This ap-
proach starts with extensive system-level simulations
of the microprocessor under protection executed while
simulating known attacks. This initial phase aims
to generate a comprehensive database of features for
training the Machine Learning (ML) model integrated
into the HSC. These features include a wide range of
microprocessor behaviors and runtime characteristics,
such as:

e #data cache writebacks;

alessandro.palumbo@inria.fr

Table 1: Best rates and the resource usage of proposed solutions

A

Add Fetched
—> Instruction's
Signature

Threshold
Exceeded?

Figure 2: The workflow of the CMS-based HSC' [4]

e ftdata cache hits and misses;
e /tbranch mispredictions;
o ..

Later on, the optimal subset of features for train-
ing the ML model will be detected. This selection is
guided by the dual objectives of maximizing anomaly
detection accuracy and minimizing false alarms while
considering the impact of the number of selected fea-
tures on the HSC’s implementation overhead.

The final phase involves a high-level synthesis pro-
cedure that translates the trained ML model into
hardware-ready code for deployment. The whole work-
flow is reported in Figure 3

A key advantage of both HSCs is their ability to
detect also new attacks. In the first approach, the HSC
can be easily reprogrammed with updated attack mod-
els as new threats are discovered. Similarly, the second
approach allows the design flow to be restarted to in-
corporate the new attack scenario. So, the HSCs main-
tain their relevance and effectiveness against emerging
vulnerabilities.

This manuscript presented innovative approaches
to enhancing the security of modern microprocessor-
based systems by addressing Microarchitectural Side-
Channel Attacks. The feasibility of detecting and mit-

Ref. | Acc. FP FN | #LUT #FF #BRAM | #LUTRAM
[4] 100% 0% 0% 19063 (3.98%) 11552 (6.13%) 17 4536 (0.53%)
[5] 99.60% | 0.40% | 0% 45,200 (6.75%) | 6,100 (NA) 0 0
Attack Run
»{ Flush The Memories

8

Features

y

Features
Selection

Y

I

Features

ML MM

y

Treaning &
Evaluating

{

Best Model

g

Hardware Hardware
Implementation Security Checker
A

Figure 3: The workflow of the ML-based HSC [5]

igating these threats in real-time with no performance
and minimal resource overhead is achieved through
programmable Hardware Security Checkers and side-
channel analysis methodologies. Table 1 reports the
attack detection rates and the resources used, indicat-
ing the percentage overhead with respect to the unpro-
tected microprocessor not implementing any Hardware
Security Checker.

References

[1] Jie Yuan et al. “A Survey of of Side-Channel Attacks
and Mitigation for Processor Interconnects”. In: Applied
Sciences 14.15 (2024), p. 6699.

[2] P. Kocher et al. “Spectre Attacks: Exploiting Speculative
Execution”. In: 40th IEEE Symposium on Security and
Privacy (S&P’19). 2019.

[3] M. Lipp et al. “Meltdown: Reading Kernel Memory
from User Space”. In: 27th USENIX Security Symposium
(USENIX Security 18). 2018.

[4] K. Arikan et al. “Processor Security: Detecting Microar-
chitectural Attacks via Count-Min Sketches”. In: IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems 30.7 (2022), pp. 938-951. por: 10.1109/TVLSI.2022.
3171810.

[5] Mattia Iamundo. “A machine learning-based security archi-
tecture to detect microarchitectural side-channel attacks
in microprocessors”. In: (2021).

RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1109/TVLSI.2022.3171810
https://doi.org/10.1109/TVLSI.2022.3171810

	Introduction & Motivation
	The Hardware Security Checker

