

RISC-V Architectural Functional Verification
David Harris1, Jordan Carlin1, Corey Hickson1, Larry Lapides2, Lee Moore2, Huda Sajjad3, Umer

Shahid3, Aimee Sutton2, Mike Thompson4, Rose Thompson5, Muhammad Zain6

1Harvey Mudd College 2Synopsys 310x Engineers 4OpenHW Foundation 5Oklahoma State University 6UET Lahore
Abstract

This work describes a comprehensive open functional verification suite for RVA22S64. The tests run on a Device
Under Test (DUT) communicating with the ImperasDV reference model via the RISC-V Verification Interface
(RVVI). The testbench collects functional coverage while the reference model checks that the DUT
demonstrates correct behavior. Lockstep eliminates the burden of generating signatures and the risk of
incomplete signatures. The suite contains manually-written privileged coverpoints for virtual memory, CSRs,
traps, and PMP as well as automatically-generated coverpoints for all unprivileged instructions.

Introduction
RISC-V is an open architecture with low barriers to entry,

encouraging a wealth of commercial and open
implementations. However, verification is more work than
design. The RISC-V ecosystem presently lacks a
comprehensive open functional verification suite that can
be easily reused across implementations. This work
introduces such a suite for RVA22S64 and lower profiles,
and for corresponding RV32 extensions.

We target architectural functional verification, testing that
a RISC-V core implements the architecture specification in
an implementation-independent fashion. This work does
not attempt to address full design verification, which
includes microarchitectural corner cases related to pipeline
hazards, memory hierarchy, or asynchronous interrupt
timing, nor does it exercise SoC features such as
peripherals or shared memory consistency. We provide test
plans, SystemVerilog covergroups, and assembly language
tests. A key feature is that the tests are run in lockstep with
a reference model configured to match the DUT, making
the tests easy to write and check. The DUT and reference
model communicate over an extended RISC-V Verification
Interface (RVVI) [1], which also conveys the architectural
state required to measure functional coverage.

Architectural Functional Verification
The architectural functional verification suite [2] draws

on the Synopsys open-source riscvISACOV [3] coverage
definitions and sampling methodology, and on the RISC-V
International riscv-arch-test ACT suite [4]. We support both
RV32 and RV64 for all of the mandatory and many optional
unprivileged and privileged extensions in the RVA22S64
profile. This includes most of the RVA23S64 features
excluding vector and hypervisor.

Unprivileged Tests
Fig. 1 shows the architectural functional verification flow.

Unprivileged verification begins by authoring a testplan

Fig. 1 Architectural functional verification flow

Fig. 2 Test plan

spreadsheet; see Fig. 2 for the I extension. The spreadsheet
has one row for each instruction, defining the type, whether
the instruction applies to RV32 and/or RV64, and which
coverpoints are applicable. Certain coverpoints have
special variants, such as jalr cp_rs1 (Fig. 2, row 16), where
nx0 means to exclude testing x0 because address 0 may not
contain usable memory.

Next, run the covergroupgen script to parse the testplan
CSV files and emit SystemVerilog functional coverage files
for each extension. The files contain one covergroup for
each instruction with the coverpoints indicated in the
testplan, as shown in Fig. 3. For example, the add
covergroup has coverpoints for each register being used as
rs1, rs2, and rd, corner cases for rs1 and rs2, and the
cr_rs1_rs2_corners cross-product of these corner cases. The

RISC-V Summit Europe, Paris, 12-15 May 2025 1

coverage model relies on riscvISACOV classes and
functions to populate a data object (“ins”) with the current
instruction name and architectural state (register values,
etc). Architectural state is sampled from the RVVI
connecting the DUT and the test bench. The covergroup
uses `ifdef for coverpoints such as corners that differ for
RV32 vs. RV64. It also has `ifdef for instructions that only
exist for one XLEN.

covergroup I_add_cg with function sample(ins_i_t ins);
 option.per_instance = 0;
 cp_asm_count : coverpoint ins.ins_str == "add" iff (ins.trap == 0) {

 bins count[] = {1};
 }
 cp_rs1 : coverpoint ins.get_gpr_reg(ins.current.rs1) iff (ins.trap == 0) { }
 cp_rs2 : coverpoint ins.get_gpr_reg(ins.current.rs2) iff (ins.trap == 0) { }
 cp_rd : coverpoint ins.get_gpr_reg(ins.current.rd) iff (ins.trap == 0) { }
 cp_rs1_corners : coverpoint (ins.current.rs1_val) iff (ins.trap == 0) {

 `ifdef XLEN32
 bins zero = {0};
 bins one = {32'b00000000000000000000000000000001};
 bins min = {32'b10000000000000000000000000000000};
…
 bins walkeven = {32'b01010101010101010101010101010101};

 `else
 zero = {0};
 bins one = {64'b000000000000000000000000000…00000000000000001};
…

Fig. 3 I.svh coverage file

The testgen script produces an assembly language test file

for each instruction in each extension for RV32 and RV64.
It creates directed random tests that systematically target
each coverpoint while randomizing all aspects of the
instructions not being covered. Fig. 4 shows an example of
some of the cp_rs1_corners tests, with the directed values
in bold. The unprivileged tests never trap.

Testcase cp_rs1_corners (Test source rs1 value = 0x0)
li x17, 0x00000000 # initialize rs1
li x11, 0x535942e8 # initialize rs2
add x26, x17, x11 # perform operation

Testcase cp_rs1_corners (Test source rs1 value = 0x1)
li x19, 0x00000001 # initialize rs1
li x3, 0x07bbf8de # initialize rs2
add x13, x19, x3 # perform operation

Testcase cp_rs1_corners (Test source rs1 value = 0x80000000)
li x2, 0x80000000 # initialize rs1
li x24, 0x197ecbd3 # initialize rs2
add x6, x2, x24 # perform operation
…

Fig. 4 rv32/I/add.S test file

The tests run in lockstep with a reference model such as

ImperasDV via RVVI. Therefore, there is no need for code
to generate signatures or check itself, and no risk of failing
to check all architectural state that changes, such as fflags.

Privileged Tests
Privileged testing begins with a human-readable

spreadsheet specifying the requirements. Most entries are
manually translated into SystemVerilog coverpoints and
then into assembly language tests, although some repetitive
tests such as exercising all CSRs and all illegal instruction
templates are automated.

The tests include a simple trap handler that resets
interrupts, handles system calls to change privilege modes,
and returns to the instruction after the trap. Again, lockstep
simulation makes it easy to check the large amount of

privileged state that might change, and avoid rotating
pointers into normal and trap handler signature memories.

Virtual memory coverpoints depend on page table entries.
We define an extended RVVI interface that adds addresses,
page table entries, and page types to check this coverage.

Results
Table 1 summarizes the number of coverpoints and

assembly language test instructions produced by the
generator scripts. Note that some coverpoints are
cross-products with a large number of bins. The tests
achieve 100% coverage of the unprivileged coverpoints.
Privileged development is at about 50%. This coverage is
independent of the device under test, so test coverage only
needs to be checked at development time.

Table 1 Size of coverage files and lines of test code
Feature Coverpoints RV64 Test kLOC

Unprivileged
I 468 81
M 252 38
A 244 21
Zc{a,b,d,f} 233 14
F, D, Zf{h/a} 1332 2284
Zb{a,b,c,s} 672 80
Zkn 292 13
Zicond 28 4
Zicbo* in progress in progress

Privileged
Zicsr 187 1.6
Zicntr 39 1.9
Exceptions 249 3
Interrupts 187 4
Endian 130 1.5
PMP In Progress N/A
Virtual Mem 249 18

The tests run correctly in lockstep with ImperasDV on the

OpenHW Foundation CORE-V Wally core [5, 6] for
rv32gc and rv64gc (RVA22S64-compatible) configurations.
ImperasDV requires configuration to match Wally
behavior. Testing uncovered 9 bugs that were not detected
by riscv-arch-test or other custom tests:

● fround bad shift in some situations
● fmvp untested and produces garbage
● Certain illegal instructions and CSRs did not trap

References
[1] github.com/riscv-verification/RVVI
[2] github.com/openhwgroup/cvw-arch-verif
[3] github.com/riscv-verification/riscvISACOV
[4] github.com/riscv-non-isa/riscv-arch-test
[5] github.com/openhwgroup/cvw
[6] D. Harris, R. Thompson, J. Stine, and S. Harris,

RISC-V System-on-Chip Design, Elsevier, 2025.

2 RISC-V Summit Europe, Paris, 12-15 May 2025

	Abstract
	Introduction
	Architectural Functional Verification
	Unprivileged Tests
	Privileged Tests
	Results
	References

