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Abstract 

This work describes a comprehensive open functional verification suite for RVA22S64. The tests run on a Device 
Under Test (DUT) communicating with the ImperasDV reference model via the RISC-V Verification Interface 
(RVVI). The testbench collects functional coverage while the reference model checks that the DUT 
demonstrates correct behavior. Lockstep eliminates the burden of generating signatures and the risk of 
incomplete signatures. The suite contains manually-written privileged coverpoints for virtual memory, CSRs, 
traps, and PMP as well as automatically-generated coverpoints for all unprivileged instructions. 

Introduction 
RISC-V is an open architecture with low barriers to entry, 

encouraging a wealth of commercial and open 
implementations. However, verification is more work than 
design. The RISC-V ecosystem presently lacks a 
comprehensive open functional verification suite that can 
be easily reused across implementations.  This work 
introduces such a suite for RVA22S64 and lower profiles, 
and for corresponding RV32 extensions. 

We target architectural functional verification, testing that 
a RISC-V core implements the architecture specification in 
an implementation-independent fashion.  This work does 
not attempt to address full design verification, which 
includes microarchitectural corner cases related to pipeline 
hazards, memory hierarchy, or asynchronous interrupt 
timing, nor does it exercise SoC features such as 
peripherals or shared memory consistency.  We provide test 
plans, SystemVerilog covergroups, and assembly language 
tests.  A key feature is that the tests are run in lockstep with 
a reference model configured to match the DUT, making 
the tests easy to write and check.  The DUT and reference 
model communicate over an extended RISC-V Verification 
Interface (RVVI) [1], which also conveys the architectural 
state required to measure functional coverage. 

Architectural Functional Verification 
The architectural functional verification suite [2] draws 

on the Synopsys open-source riscvISACOV [3] coverage 
definitions and sampling methodology, and on the RISC-V 
International riscv-arch-test ACT suite [4]. We support both 
RV32 and RV64 for all of the mandatory and many optional 
unprivileged and privileged extensions in the RVA22S64 
profile. This includes most of the RVA23S64 features 
excluding vector and hypervisor. 

Unprivileged Tests 
Fig. 1 shows the architectural functional verification flow. 

Unprivileged  verification begins by authoring a testplan  
  

 

 
Fig. 1 Architectural functional verification flow 
 

 
Fig. 2 Test plan  

 
spreadsheet; see Fig. 2 for the I extension.  The spreadsheet 
has one row for each instruction, defining the type, whether 
the instruction applies to RV32 and/or RV64, and which 
coverpoints are applicable. Certain coverpoints have 
special variants, such as jalr cp_rs1 (Fig. 2, row 16), where 
nx0 means to exclude testing x0 because address 0 may not 
contain usable memory. 

Next, run the covergroupgen script to parse the testplan 
CSV files and emit SystemVerilog functional coverage files 
for each extension. The files contain one covergroup for 
each instruction with the coverpoints indicated in the 
testplan, as shown in Fig. 3.  For example, the add 
covergroup has coverpoints for each register being used as 
rs1, rs2, and rd, corner cases for rs1 and rs2, and the 
cr_rs1_rs2_corners cross-product of these corner cases. The 
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coverage model relies on riscvISACOV classes and 
functions to populate a data object (“ins”) with the current 
instruction name and architectural state (register values, 
etc). Architectural state is sampled from the RVVI 
connecting the DUT and the test bench. The covergroup 
uses `ifdef for coverpoints such as corners that differ for 
RV32 vs. RV64.  It also has `ifdef for instructions that only 
exist for one XLEN.  
 
covergroup I_add_cg with function sample(ins_i_t ins); 
 option.per_instance = 0;  
 cp_asm_count : coverpoint ins.ins_str == "add"  iff (ins.trap == 0 )  { 

 bins count[]  = {1}; 
 } 
 cp_rs1 : coverpoint ins.get_gpr_reg(ins.current.rs1)  iff (ins.trap == 0 )  { } 
 cp_rs2 : coverpoint ins.get_gpr_reg(ins.current.rs2)  iff (ins.trap == 0 )  { } 
 cp_rd : coverpoint ins.get_gpr_reg(ins.current.rd)  iff (ins.trap == 0 )    { } 
 cp_rs1_corners : coverpoint (ins.current.rs1_val) iff (ins.trap == 0 )  { 

 `ifdef XLEN32 
    bins zero  =    {0}; 
    bins one  =     {32'b00000000000000000000000000000001}; 
    bins min  =     {32'b10000000000000000000000000000000}; 
… 
    bins walkeven = {32'b01010101010101010101010101010101}; 

    `else 
    zero          = {0}; 
    bins one      = {64'b000000000000000000000000000…00000000000000001}; 
… 

Fig. 3 I.svh coverage file 
 
The testgen script produces an assembly language test file 

for each instruction in each extension for RV32 and RV64.  
It creates directed random tests that systematically target 
each coverpoint while randomizing all aspects of the 
instructions not being covered.  Fig. 4 shows an example of 
some of the cp_rs1_corners tests, with the directed values 
in bold. The unprivileged tests never trap. 

 
# Testcase cp_rs1_corners (Test source rs1 value = 0x0) 
li x17, 0x00000000 # initialize rs1 
li x11, 0x535942e8 # initialize rs2 
add x26, x17, x11 # perform operation 
 
# Testcase cp_rs1_corners (Test source rs1 value = 0x1) 
li x19, 0x00000001 # initialize rs1 
li x3, 0x07bbf8de # initialize rs2 
add x13, x19, x3 # perform operation 
 
# Testcase cp_rs1_corners (Test source rs1 value = 0x80000000) 
li x2, 0x80000000 # initialize rs1 
li x24, 0x197ecbd3 # initialize rs2 
add x6, x2, x24 # perform operation 
… 

Fig. 4 rv32/I/add.S test file 
 
The tests run in lockstep with a reference model such as 

ImperasDV via RVVI. Therefore, there is no need for code 
to generate signatures or check itself, and no risk of failing 
to check all architectural state that changes, such as fflags. 

Privileged Tests 
Privileged testing begins with a human-readable 

spreadsheet specifying the requirements.  Most entries are 
manually translated into SystemVerilog coverpoints and 
then into assembly language tests, although some repetitive 
tests such as exercising all CSRs and all illegal instruction 
templates are automated.  

The tests include a simple trap handler that resets 
interrupts, handles system calls to change privilege modes, 
and returns to the instruction after the trap. Again, lockstep 
simulation makes it easy to check the large amount of 

privileged state that might change, and avoid rotating 
pointers into normal and trap handler signature memories. 

Virtual memory coverpoints depend on page table entries.  
We define an extended RVVI interface that adds addresses, 
page table entries, and page types to check this coverage. 

Results 
Table 1 summarizes the number of coverpoints and 

assembly language test instructions produced by the 
generator scripts. Note that some coverpoints are 
cross-products with a large number of bins. The tests 
achieve 100% coverage of the unprivileged coverpoints. 
Privileged development is at about 50%. This coverage is 
independent of the device under test, so test coverage only 
needs to be checked at development time. 

 
Table 1 Size of coverage files and lines of test code 
Feature Coverpoints RV64 Test kLOC 

Unprivileged 
I 468 81 
M 252 38 
A 244 21 
Zc{a,b,d,f} 233 14 
F, D, Zf{h/a} 1332 2284 
Zb{a,b,c,s} 672 80 
Zkn 292 13 
Zicond 28 4 
Zicbo* in progress in progress 

Privileged 
Zicsr 187 1.6 
Zicntr 39 1.9 
Exceptions 249 3 
Interrupts 187 4 
Endian 130 1.5 
PMP In Progress N/A 
Virtual Mem 249 18 

 
The tests run correctly in lockstep with ImperasDV on the 

OpenHW Foundation CORE-V Wally core [5, 6] for 
rv32gc and rv64gc (RVA22S64-compatible) configurations.  
ImperasDV requires configuration to match Wally 
behavior.  Testing uncovered 9 bugs that were not detected 
by riscv-arch-test or other custom tests:   

● fround bad shift in some situations 
● fmvp untested and produces garbage 
● Certain illegal instructions and CSRs did not trap 
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