
RISC-V Architectural Functional
Verification
David Harris1, Jordan Carlin1, Corey Hickson1, Larry Lapides2, Lee Moore2, Huda Sajjad3, Umer Shahid3,
Aimee Sutton2, Mike Thompson4, Rose Thompson5, Muhammad Zain6

Testing Flow

Methodology

Fig. 1 Architectural functional verification flow

Test Plans

Fig. 2 Unprivileged test plan

Fig. 3 Privileged test plan

Instruction Type cp_asm_count cp_rd cp_rs1 cp_rs2 cp_rd_corners cp_rs1_corners cr_rs1_rs2_corners

lw L x x nx0 x
sw S x nx0 x
addi I x x x x x
add R x x x x x x x
sub R x x x x x x x
beq B x x x x x
jalr JR x x nx0
lui U x x lui

coverpoint covergroup Sub Feature Coverpoint Description

cp_instr_adr_misaligned_branch exceptionsm
Instruction Address

Misaligned
Branch taken to an address that is an odd multiple of 2

PC[1] = 0 and imm[1]=1

cp_instr_adr_misaligned_branc
h_nottaken exceptionsm

Instruction Address
Misaligned

Each type of branch not taken to an address that is an
odd multiple of 2

cp_instr_adr_misaligned_jal exceptionsm
Instruction Address

Misaligned
jal to an address that is an odd multiple of 2

PC[1] = 0 and imm[1]=1

cp_instr_access_fault exceptionsm Instruction Access Fault Instruction access fault is raised

cp_illegal_instruction exceptionsm Illegal Instruction
Executing instruction 0x00000000 and 0xFFFFFFFF

throws an illegal instruction exception.

Covergroups

Tests

Results

Fig. 4 Size of coverage files, lines of test code, and percentage of
coverpoints covered by tests

● Scope is architectural functional verification
○ Does not cover implementation specific features (caches, branch

prediction, etc.)
● Coverage model draws on the Synopsys open-source riscvISACOV

covergroup and sampling methodology
● Tests run on a Device Under Test (DUT) communicating with the

ImperasDV reference model via the RISC-V Verification Interface
(RVVI).

● Testbench collects functional coverage while the reference model
checks that the DUT demonstrates correct behavior.

covergroup I_add_cg with function sample(ins_t ins);
 option.per_instance = 0;
 ...
 cp_rd : coverpoint ins.get_gpr_reg(ins.current.rd) iff (ins.trap == 0) {
 //RD register assignment
 }
 ...
 cp_rs1_corners : coverpoint unsigned'(ins.current.rs1_val) iff (ins.trap == 0) {
 wildcard bins zero = {0};
 wildcard bins one = {32'b00000000000000000000000000000001};
 wildcard bins two = {32'b00000000000000000000000000000010};
 wildcard bins min = {32'b10000000000000000000000000000000};
 wildcard bins minp1 = {32'b10000000000000000000000000000001};
 wildcard bins max = {32'b01111111111111111111111111111111};
 wildcard bins maxm1 = {32'b01111111111111111111111111111110};
 wildcard bins ones = {32'b11111111111111111111111111111111};
 wildcard bins onesm1 = {32'b11111111111111111111111111111110};
 wildcard bins alteven = {32'b10101010101010101010101010101010};
 wildcard bins altodd = {32'b01010101010101010101010101010101};
 wildcard bins random = {32'b01011011101111001000100001110111};
 }
 ...
endgroup

● Unprivileged covergroups generated by covergroupgen.py script
● Privileged covergroups handwritten from English test plans

Testcase cp_rd (Test destination rd = x1)
li x15, 0x2df19c49bf9d2b53 # initialize rs1 to a random value
li x3, 0xe21482b7cfc50d6b # initialize rs2 to a random value
add x1, x15, x3 # perform operation
RVTEST_SIGUPD(x5, x1)

Testcase cp_rd (Test destination rd = x2)
li x24, 0x214606929e470dd7 # initialize rs1 to a random value
li x23, 0x2391fecd330ad053 # initialize rs2 to a random value
add x2, x24, x23 # perform operation
RVTEST_SIGUPD(x5, x2)

...

Testcase cp_rd (Test destination rd = x31)
li x19, 0xea92d50933697752 # initialize rs1 to a random value
li x22, 0x1d3e035ce1739ac5 # initialize rs2 to a random value
add x31, x19, x22 # perform operation
RVTEST_SIGUPD(x1, x31)

● Unprivileged tests generated by testgen.py script
● Privileged tests handwritten from English test plans

Lockstep Simulation with ImperasDV
● Tests run on DUT and ImperasDV reference model simultaneously
● ImperasDV and the DUT communicate over RVVI, checking that the

DUT demonstrates correct behavior
● Lockstep eliminates the burden of generating self-checking tests

and the risk of false-positives

Future Work

The teams intends to modify the testing flow to become compatible with the riscv-arch-test framework and to fully integrate the tests into the
riscv-arch-test repository. Additionally, the teams plan to add covergroups and tests for the IBM floating point verification framework.

1Harvey Mudd College, 2Synopsys, 310xEngineers, 4OpenHW Foundation, 5Oklahoma State University, 6UET Lahore https://github.com/openhwgroup/cvw-arch-verif/

Feature Coverpoints RV64 Test kLOC Percent Coverage
Unprivileged

I 468 81 100%
M 252 38 100%
A 244 21 100%
Zc{a,b,d,f} 233 14 100%
F, D, Zf{h/a} 1332 2284 100%
Zb{a,b,c,s} 672 80 100%
Zkn 292 13 100%
Zicond 28 4 100%
Zicbo* in progress in progress

Privileged
Zicsr 187 1.6 100%
Zicntr 39 1.9 100%
Exceptions 249 3 100%
Interrupts 187 4 100%
Endian 130 1.5 100%
PMP In Progress N/A N/A
Virtual Mem 249 18 Sv32 & Sv39 at 100%

● The tests, covergroups, and lockstep simulation methodology has
been demonstrated on the OpenHW Foundation’s CORE-V Wally core

● Lockstep simulation with ImperasDV has uncovered 9 bugs that
were not detected by riscv-arch-test and other custom test suites
○ fround bad shift in some situations
○ fmv untested and produced garbage
○ certain illegal instructions and CSRs did not trap

