
A Hardware-Based Cache Side Channel Attack
Detection Mechanism for RISC-V Processors

Andreas Brokalakis1,2*, Alexandros Skyvalos1, Sotiris Ioannidis1, Iakovos Mavroidis1

and Ioannis Papaefstathiou2

1School of Electrical and Computer Engineering, Technical University of Crete, Greece
2Exascale Performance Systems PLC, Greece

Abstract

Side-channel attacks rely on information that can be gathered (or leaked) by the fundamental way a computer system
operates. For CPU-based systems, a prominent number of these attacks target the caches aiming at gaining unauthorised
access to sensitive data. Proposed solutions provide limited remedies and come at great costs, especially associated with the
difficulty to reliably identify such attacks. In this work, we analyse cache-based side channel attacks on RISC-V processors
and demonstrate that they all depend on accessing specific architectural registers to successfully complete. We present
a detection mechanism implemented at the hardware level that is able to detect all such attacks, without producing false
negative detections and without requiring any software assistance or modifications.

Introduction

Given enough time, an attacker will discover and ex-
ploit the vulnerabilities of any static computing sys-
tem. Even worse, in the absence of apparent design
flaws or implementation weaknesses, attackers may
be able to extract secrets or gain access to systems, by
observing their operation through side channels (e.g.,
by timing the completion of a task). In fact although
such attacks were proposed decades ago, every year
an exploding number is reported [1].

No processors are immune to such attacks, includ-
ing those based on the RISC-V architecture. Defense
mechanisms need to be implemented in hardware to
be really effective [2] or at least incur non-detrimental
performance and compatibility issues. In practice,
one of the key difficulties has been the reliable detec-
tion of an ongoing side channel attack, which forces
mitigation solutions to degrade performance or limit
access to processor features for all running processes.
In this work, we explore how cache-based side chan-
nel attacks are launched on RISC-V processors and
propose a purely hardware based detection mecha-
nism. We employ an open source RISC-V processor
(CVA6 [3]) and construct a monitoring scheme that
is able to detect with confidence the execution of an
attack, making it possible to relay this information
to any hardware-based defense mechanism that can
effectively mitigate the attack.

Background

In a modern processor, several microarchitectural re-
sources (caches, TLBs, branch predictors and others)

*Corresponding author: abrokalakis@tuc.gr

are shared among programs. These shared resources
can leak information either as part of their fundamen-
tal design (e.g. a cache miss will lead to longer data
read time than a cache hit) or because there may be
flaws in their implementation or optimization tricks
[2]. This information leakage may be observed and
exploited by processes that run in the user space.

Cache-based side channel attacks (SCAs) are par-
ticularly important. Not only they are very serious
attacks on their own, they constitute the underlying
layer of most side-channel attacks. For example, the
famous Meltdown and Spectre attacks that impact al-
most all modern CPUs, take advantage of weaknesses
in the out-of-order and speculative execution hard-
ware respectively but use a well-know cache-based
attack method to complete their work.

Typically, cache SCAs are based on the principle
that the access time of a particular cache line depends
on whether it has been accessed by a victim process
or not. Prime+Probe [4] attacks prime cache sets with
arbitrary data, then lets a victim program run and,
finally, accesses the cache sets again. A higher access
time indicates that the victim program also filled the
same sets and, therefore, the attacker can identify
them. A lot of variations of this basic concept have
been reported (e.g. Flush+Reload and Evict+Reload).

Different defense mechanisms have been proposed
as countermeasures against cache side-channel at-
tacks at the hardware level [1]. These solutions
mainly focus on isolation and obfuscation. The for-
mer approaches fragment the cache and limit the
cache capacity available to a given process, while the
latter introduce added latency to cache accesses so
that hits and misses cannot be distinguished clearly.
Significant performance, area and power trade-offs
are associated with all these solutions, while in most

mailto:abrokalakis@tuc.gr


cases changes are required to be made to the system
and application software to render them effective. It
is important to note that these defense mechanisms
affect equally all processes running on a CPU - both
legit and malicious ones. This comes as a result of
the difficulty to reliably distinguish between those
two kinds of processes and therefore the impact in
performance affects them all.

Detecting Attacks at Hardware
Level

We employed an open-source RISC-V processor de-
sign (CVA6 [3]) and successfully implemented a
working system on an FPGA development board
(Digilent Genesys 2) that booted and executed a
Linux operating environment. Starting from the ini-
tial work of Martinoli et al [5], we were able to con-
struct a trojan based on the architectural and imple-
mentation information of the available CVA6 source
code, which enabled us to execute multiple cache-
based side channel attacks on its L1 data cache (such
as Prime+Probe and Evict+Reload).

We performed an analysis of the trojan to identify
critical aspects of its success. We noticed that it re-
quired precise timing measurements to determine
if an element is located inside the cache or not. To
accomplish this, it employed low-level functions that
access directly special Control Status Registers (CSR)
of the RISC-V architecture, such as rdcycle. The latter
returns the number of clock cycles executed by the
processor’s core. We replaced these calls with more
high-level timers such as those provided by the Linux
OS that we were running on top of the CVA6 proces-
sor. However this resulted in failure of the attacks,
making it evident that the information provided by
the CSR registers was crucial.

At the hardware level, we added a counter inside
the CVA6 core to measure the amount of accesses to
rdcycle. Using this counter, we monitored the overall
accesses to the specific CSR in multiple occasions to
determine access patterns and whether the OS and le-
gitimate applications also rely heavily on this register.
We executed the overall Linux stack, typical applica-
tions running on top of the processor, benchmarks
provided by the RISC-V and CVA6 repositories and
finally the trojan carrying out the attacks. On all le-
gitimate operations, we measured that the frequency
of accesses to the specific CSR is orders of magnitude
lower than what is observed during a side channel
attack. As such, we determined that performing such
measurements provided a safe mechanism to detect
with confidence the execution of an attack.

Indeed, with the above implementation we are able

to detect 100% of the attacks executed on the core.
The detection mechanism is not susceptible to false
negatives, however it allows for a very low number
of false positive detections. This is a side effect of the
use of a counter and associated thresholds. It should
be noted though, that because of the huge difference
between normal number of rdcycle accesses and ac-
cess during an attack, these false positives can only
appear extremely rarely and after very long periods
of time. They also do not compromise the security of
the system, as no attacks can pass undetected.

The implementation cost of the detection mecha-
nism is negligible in terms of resources in the tested
FPGA system (Xilinx Kintex 7). Additionally, the
added hardware does not affect any critical paths of
the design and therefore it does not affect system
clock. It should be noted that although it has been
tested on the CVA6 processor, its use is general and
can be added to any RISC-V processor that imple-
ments and exposes the specific CSRs.

Conclusions & Future Work

This work presents a cache SCA detection mecha-
nism for RISC-V processors. By measuring accesses
to specific CSRs, it can distinguish attacks with 100%
confidence. It is implemented at the hardware level
requiring negligible resources. It is completely trans-
parent to the software layers and does not introduce
any performance penalties. Future work will extend
the detection scheme with a mitigation mechanism to
provide a complete hardware-based defense solution.

References

[1] C. Su and Q. Zeng. “Survey of CPU cache-based
side-channel attacks: systematic analysis, secu-
rity models, and countermeasures”. In: Security
and Communication Networks (2021).

[2] G. Dessouky et al. “With great complexity comes
great vulnerability: from stand-alone fixes to re-
configurable security”. In: IEEE Security & Pri-
vacy 18.5 (2020), pp. 57–66.

[3] CVA6 RISC-V CPU. url: https://github.com/
openhwgroup/cva6.

[4] D.G. Osvik, A. Shamir, and E. Tromer. “Cache
attacks and countermeasures: the case of AES”.
In: Topics in Cryptology–CT-RSA 2006: The Cryp-
tographers’ Track at the RSA Conference 2006, San
Jose, CA, USA, February, 2005. Springer. 2006.

[5] Valentin Martinoli et al. “CCALK: (When) CVA6
Cache Associativity Leaks the Key”. In: Journal of
Low Power Electronics and Applications 13.1 (2023).

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/openhwgroup/cva6
https://github.com/openhwgroup/cva6

	Introduction
	Background
	Detecting Attacks at Hardware Level
	Conclusions & Future Work

