
SCAR: Selective Cache Address Remapping for
Mitigating Cache Side-Channel Attacks

Pavitra Prakash Bhade1, Olivier Sentieys2, Sharad Sinha1

1School of Mathematics and Computer Science, Indian Institute of Technology Goa, India
2University of Rennes, INRIA

Abstract

Cache side channel attacks (CSCA) that exploit cache conflicts pose a significant threat to the security of shared
caches. To counter these attacks, cache designs incorporating cache randomization have emerged as a highly
effective solution. However, these techniques rely on address remapping for all instructions, thus introducing
performance drawbacks and risks of breaking remapping within the rekeying interval. We propose a novel
cache architecture and control mechanism called SCAR that performs selective remapping of instructions, thus
enhancing security while minimizing performance overhead. SCAR uses modified cache search and replacement
algorithms, along with minimal addition to the cache hardware architecture.

Introduction

Cache mappings and replacement policies help to ef-
fectively use the limited size caches through sharing
of cache set/lines. This introduces “conflict-based at-
tacks” as some addresses must share the same cache
set/line. Most existing methods involve remappings
for all instruction addresses, often resulting in per-
formance overhead. Furthermore, it is still prone to
predictive analysis-based key extraction, though fre-
quent rekeying helps to some extent. In response to
these challenges, we propose a novel cache architecture
combined with a selective randomization technique
that remaps only the addresses of instructions that
conflict with secret-dependent instructions and whose
execution trace can reveal the secret. Our approach
reduces the overall performance overhead and intro-
duces additional entropy, thereby fortifying the system
against attacks.

Methodologies

We propose modifications in the cache structure as
well as in the cache search and replacement policy.

1. Update in cache structure: We introduce two
new bits, S (Secret) and R (Remap), in each cache
line. The S bit indicates whether the mapped
line includes secret information, and the R bit
indicates whether this line is loaded in the cache
after remapping the address.

2. Modification in cache search and replace-
ment algorithms Algorithm 1 outlines the
method for searching an instruction/data (hence-
forth referred to as an element) in the cache mem-
ory. This process involves two searches in the
cache. Hardware optimizations can be applied to

Algorithm 1 Search element in cache using the SCAR
technique
1: procedure Cache search
2: if Addr “A" present in cache then
3: if Remap bit ==0 then
4: Cache Hit
5: end if
6: else
7: Remaps “A" to “X"
8: if Addr “X" present in cache then
9: if Remap bit ==1 then

10: Cache Hit
11: end if(end all ifs and procedure)

improve performance. Algorithm 2 describes the
cache replacement process. To enhance security,
the remapping key is regenerated after every 100
accesses to the secret cache lines [1], invalidating
only the secret and remapped locations, unlike
full cache invalidation in existing randomization
methods.

Experiments and Results

We have implemented SCAR in the Comet RISC V
core [2]. For our experiments, we use ZephyrOS, an
open-source operating system dedicated to embedded
systems. We performed tests on the RSA 512 encryp-
tion algorithm along with the Mibench benchmark
suite to emulate some workloads. To mark the secret
[3], we annotate the respective section of the code.
We launched eviction-based attacks like Prime+Probe
and Evict+Probe to test our method. We observed
that the secret section is not evicted by the launched
attacks on our proposed cache structure, thus showing

RISC-V Summit Europe, Paris, 12-15th May 2025 1



Algorithm 2 Replace element in cache using the
SCAR technique
1: procedure Cache Replacement Policy
2: if Address “A" has to evict Address “B" then
3: if Addr “A" is a secret then
4: Remap “A" to “X"
5: Search replacement location for “X"
6: Replace at found location
7: Set Secret Bit of Addr “X" to 1
8: Set Remap Bit of Addr “X" to 1
9: else

10: if Secret Bit of Addr “B" ==0 then
11: Replace
12: else
13: Remap Addr “A" to “X"
14: Search replacement location for “X"
15: Replace at the found location
16: Set Remap Bit of “X" to 1
17: end if(end all ifs and procedure)

successful mitigation of attacks in our experiments.

Figure 1: Cache hit comparison with [4] on a 32KB cache
for Mibench

Figure 2: Comparison of clock cycles per instruction
(CPI) in selective vs full remapping method

Fig. 1 compares our work with the current state-of-
the-art techniques, as analysed in [4], for a 32KB cache
with Mibench benchmarks as the application. These
results demonstrate that SCAR achieves a higher cache
hit ratio than the other techniques. Figure 2 shows
the impact on clock cycles per instruction (CPI) due
to SCAR against the full remapping methods for the
same benchmark applications considered. The CPI
os SCAR is around 1.18 clock cycles lower than full
address remapping, thus leading to much less impact
on performance. Fig. 3 depicts the overhead in exe-

Figure 3: Overhead in execution time due to remapping
in SCAR over LRU caches

cution time due to introducing remap logic in SCAR
over LRU-based cache design.

We have also performed experiments and analysed
the impact on cache hits, misses, remaps, and perfor-
mance overhead by varying the cache size and number
of secrets monitored. However, due to page length
limitations, we have not included these results.

In applications with no secrets to be monitored,
SCAR will default to traditional cache search and re-
placement, i.e., without any remapping. This protects
the original performance without any impact compared
to the current remap techniques, where encryptions
are bound to happen.

Conclusion

Targeting RISC-V cores, we have proposed a mini-
mal enhancement in the cache microarchitecture and
in the search and re-placement policy to mitigate
conflict-based CSCA. We have analysed the perfor-
mance overhead of our technique with state-of-the-art
cache randomisation approaches. Future work includes
synthesizing the proposed cache structure in various
RISC-V microarchitectures to gain deeper insights on
security and performance evaluations.

References

[1] Moinuddin K. Qureshi. “CEASER: Mitigating Conflict-
Based Cache Attacks via Encrypted-Address and Remap-
ping”. In: 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 2018, pp. 775–
787. doi: 10.1109/MICRO.2018.00068.

[2] Simon Rokicki et al. “What You Simulate Is What You
Synthesize: Designing a Processor Core from C++ Specifi-
cations”. In: Proceedings of the International Conference
on Computer-Aided Design, ICCAD 2019, Westminster,
CO, USA, November 4-7, 2019. Ed. by David Z. Pan. ACM,
2019, pp. 1–8. isbn: 9781728123509.

[3] Michael Schwarz et al. “ConTExT: A Generic Approach
for Mitigating Spectre”. In: 27th Annual Network and
Distributed System Security Symposium (NDSS). 2020.

[4] Lukas Giner et al. “Scatter and Split Securely: Defeating
Cache Contention and Occupancy Attacks”. In: 2023 IEEE
Symposium on Security and Privacy (SP). 2023, pp. 2273–
2287. doi: 10.1109/SP46215.2023.10179440.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1109/SP46215.2023.10179440

	Introduction
	Methodologies
	Experiments and Results
	Conclusion

