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Abstract

This talk proposal showcases the sensitivity of processor microarchitectures to fault injection attacks, which
threat hardware and software security. Therefore, security analysis must consider both the hardware and software
models of the target system. Furthermore, fault injection requires an exhaustive analysis of all possible injection
locations, resulting in unprecedented complexity. We present our methodology and two tools developed for this
purpose. In particular, our approach has enabled us to identify a new vulnerability in the OpenTitan secure core.

Introduction
Context. Fault injection allows an attacker to
move the target processor out of its expected
functioning bounds, such that the target system
reaches unexpected hardware and software states or
follows unexpected execution paths. Reaching such
unexpected states is then leveraged in attacks for
leaking secrets, escalating privileges, etc.

An analysis at the hardware level can show that
a module is functionally incorrect due to the pertur-
bation induced by fault injections. Such approaches
are sufficient for the robustness analysis of standalone
components such as cryptographic IPs, but usually,
the exploitation of a fault injection, in an attack,
involves software. On the other side, a pure software
analysis struggles to model many subtle behavioral
effects induced by fault injection [1].

Recent research has highlighted the need to consider
the consequences of fault injection in the processor
micro-architecture [2]. However, such effects, induced
by faults in the processor microarchitecture, can
only be leveraged in an attack by specific software
conditions, in particular the sequence of program
instructions executed, such that the fault effects
propagate until the attack target is reached.

Contributions. Our team has implemented
pre-silicion tools [3, 4] able to: 1) identify exploitable
vulnerabilities at the software level based on these in-
teractions between a software and a microarchitecture,
or 2) formally prove the security, for a given attacker
model, of a system embedding hardware/software
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countermeasures against fault injections. These tools
implement a formal methodology that has proved
effective in finding microarchitectural vulnerabilities
and/or proving the robustness, for a given fault model,
of various RISC-V based processors [5]. For instance,
we apply this methodology to the OpenTitan secure el-
ement and formally prove the security of its processor’s
HW countermeasure to single bit-flip injections [6].

µArchiFI

µArchiFI [5] generates a formal transition system
from a processor hardware description in Verilog, a
binary software program, and an attacker model com-
prising the fault model. First, the user can simulate
the execution of the target program, compiled for the
corresponding ISA, on the hardware design to set the
initial state of the hardware right before the instruction
sequence to analyze formally. Then, the user needs to
specify the attacker model comprising the goal φ, the
maximal number of faults N , and the fault model (loca-
tion, timing, and fault effects). This model is automati-
cally integrated into the system through a specific pass.
The attacker’s goal can also be specified into the hard-
ware design using the SystemVerilog Assertion subset
supported by Yosys [7]. Finally, the µArchiFI tool
produces a transition system in Smt-lib or Btor2 for-
mat. The faulty transition system can be verified using
external model-checking tools compatible with these in-
put formats, like AVR [8], Pono [9] or BtorMC [10].

When the model checker finds a counterexample, a
VCD file reports precisely where the fault is injected
and when the attacker’s goal is reached. However,
understanding the propagation of faults and their
consequences requires human expertise, but this task
can be facilitated by external tools that perform
differential traces comparison against a reference
model. µArchiFI was used to analysis the CV32E40P
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RISC-V processor and its secure flavor the CV32E40S.

k-Fault-Resistant Partitioning
A major challenge of µArchiFI lies in the state space
generated by the modeling of processor’s behavior
executing a sequence of instructions and under a fault
model. A monolithic resolution approach combining
all these elements can only handle the analysis of hun-
dreds of machine instructions executed on an in-order
4- or 5-stage processor, for a single fault injection. Our
extension k-Fault-Resistant Partitioning (k-FRP) [6]
solves the fault propagation problem when assessing
redundancy-based hardware countermeasures. In a
first step, a hardware verification step converts an
input RTL design, after synthesis, to a cycle-accurate
bit-accurate circuit model. The fault model describing
all possible fault injections is then derived from the
input fault model and the produced circuit model.
k-FRP then formally proves, at the gate level, whether
hardware redundancy-based countermeasures can
capture up to k faults injected by an attacker, thus
labeling it as k-fault secure, and this independently
of the program being executed. When k-FRP fails to
label a HW counter-measure as k-fault secure, the user
can inspect the verification logs for failure analysis.

The proven security guarantees by k-FRP in the
first step can then reduce the remaining hardware
attack surface when introducing the software in a
second step. This second step is a system verification
process that analyzes program executions to detect
if an attacker can reach his goal. This verification is
performed by considering only the faults that have not
been formally proven, at the first step, to be detected
by hardware protections. The software and hardware
co-verification takes as input the hardware design, a
binary program, the attack order, the attacker goal,
similarly to µArchiFI but on a reduced fault model.

k-FRP was used to analyze the k-fault security
of a development version of the fault-hardened
RISC-V Ibex processor used in the OpenTitan secure
element [11]. We discovered a new vulnerability to
a single fault injection in the processor’s register file,
demonstrated its possible exploitation in software
secured programs, and verified the security of the
proposed fix. We also verified the robustness of the
OpenTitan secure element running the first step of a se-
cureboot process, a previously intractable verification.

Related Work
Classical verification methods like simulation are used
but they are often not exhaustive, and it is often
difficult to highlight corner cases. Formal techniques
were first dedicated to analyze cryptographic circuits

with equivalence checking. However, they do not
handle sequential verification since the design to an-
alyze is unrolled to perform equivalence checking, and
thus, tools cannot analyze software. In comparison,
µArchiFI does not support advanced technological
netlists, but supports any Verilog or SystemVerilog
design by plugging our translation pass into the Yosys
tool. In addition, we take advantage of a simplified
word-level netlist to bridge the gap with the software
and facilitate the analysis of the transitional system.
We also keep the sequential logic instead of unrolling
and flattening the whole design to use model-checking
verification techniques.

On the other hand, approaches at the binary level
propose methodologies to analyze the robustness
of software programs. However, these works do not
consider the execution platform, and the generic
fault models used are sometimes inadequate to model
microarchitectural implementation details.

Finally, commercial tools offer all the building blocks
required for such a fault injection analysis, but their
closed nature prevents users from integrating them into
the same verification framework. SystemVerilog Asser-
tion (SVA), supported by tools such as Synopsys VC
Formal or Siemens QuestaVerify, could define the at-
tacker’s goal, but is not suitable for fault modeling. On
the other hand, tools such as Cadence JasperGold offer
support for fault injection but do not consider software.
In short, none of these tools address the verification
of software and hardware against fault injection.
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