Call Rewinding Towards RISC-V Specification

Téo Biton'?2, Olivier Gilles!, Daniel Gracia Pérez!, Nikolai Kosmatov!, Sébastien Pillement?

1 Thales, cortAlx Labs France, F-91767 Palaiseau, France
2Nantes Université, CNRS, IETR UMR 6164, F-44000 Nantes, France

Abstract

Memory vulnerabilities are still being exploited today to perform code-reuse attacks by overwriting the return address.
Recently, call rewinding has been introduced as a security countermeasure to mitigate this type of abuse, placing
itself on the same perimeter as the Zicfiss extension. We propose a thorough comparison of call rewinding with the
Zicfiss extension and discuss on its viability for adoption in industrial systems.

Introduction to Call Rewinding

Memory corruption exploits continue to pose a major se-
curity threat to modern computing systems, with return-
oriented programming (ROP) [1] attacks being one of the
most prevalent code-reuse methods to bypass traditional
security defenses. Various mitigation techniques, the
most popular being shadow stacks, have been proposed
to mitigate these threats, commonly refered to as back-
ward edge protections. In this context, call rewinding [2]
appears as a novel and efficient hardware-based coun-
termeasure aimed at securing return addresses without
the overhead commonly associated with software-based
solutions.

Call rewinding leverages a fundamental property of
how software should be compiled according to the appli-
cation binary interface (ABI) in major instruction set
architectures (ISAs) such as x86, ARM, and RISC-V:
all return instructions should transfer control to a valid
call site. The core concept of call rewinding involves
fetching the instruction preceding the return target ad-
dress and verifying whether it is a call instruction. If
the validation fails, an exception is raised, preventing
the execution of a wrongly taken backward control-flow
transfer. This approach ensures minimal performance
overhead while maintaining robust security against unau-
thorized control-flow redirection.

Return instruction

I lia0,5 I ret |
Call rewinding chec]/ l Nominal execution

I jalr s2 Imv50,58|
"Call instructiorbl'n

Figure 1: Rewinded backward control-flow transfer.

RISC-V Summit Europe, Paris, 12-15th May 2025

The open source RISC-V ecosystem has played a crit-
ical role in enabling and validating call rewinding. The
open specifications, combined with freely available open
cores and toolchains, provided a flexible and transparent
environment for experimentation and implementation.
The ability to modify and test CPU microarchitecture
without proprietary restrictions accelerated the develop-
ment and validation of the mechanism. We propose a
more in-depth evaluation of call rewinding positionning
in relation to the ratified Zicfiss [3| extension. We com-
plement the original paper [2] with an accent on how
call rewinding could be made safer and more robust, in
order to be integrated in critical systems.

Positioning with Zicfiss Extension

The RISC-V Zicfiss [3] extension introduces a hardware-
assisted shadow stack mechanism designed to enforce
backward-edge control-flow integrity. It provides a ro-
bust defense against ROP attacks by securely storing
return addresses in a separate shadow stack, which is
then verified upon function returns. While Zicfiss of-
fers a strong security guarantee, it introduces additional
memory and processing overhead, as new instructions
are introduced as well as memory pages to store the
shadow stacks.

Call rewinding presents an alternative by eliminat-
ing the need for dedicated shadow stacks per process,
relying instead on the verification of return addresses
at the microarchitectural level. Unlike Zicfiss, which
requires additional storage and new instructions, call
rewinding operates seamlessly within processor archi-
tectures and does not require particular states to be
saved across contexts. Furthermore, call rewinding lever-
ages return address prediction mechanisms to further
optimize performance without sacrificing security.

Performance-wise, the Zicfiss extension introduces



new instructions, and more specifically, instructions that
perform memory operations; as the main performance
bottleneck in todays systems lies in memory operations,
this can introduce execution slowdowns. Shadow stacks
require dedicated memory regions and potentially lead
to increased cache pressure, while call rewinding is an
alternative for scenarios where resource constraints and
performance considerations are paramount. It achieves
similar levels of backward-edge protection with a negli-
gible cost in most computing environments.

Ultimately, both approaches aim to enhance backward-
edge security, but with different tradeoffs. While Zic-
fiss ensures strict, fine-grained return address integrity,
call rewinding provides coarse-grained return address
integrity. In theory, shadow stacks are then more secure,
i.e., they leave fewer targets for attackers who tamper
with the return address. However, in reality issues can
arise (1) when loading dynamic libraries that were not
compiled with the extension or (2) regarding the protec-
tion of the shadow stack memory. As highlighted above,
there are tradeoffs in regards to performance, utilization
of hardware resources, and security.

Towards RISC-V Specification

For security mechanisms to be widely adopted in in-
dustrial settings, they must provide a balance between
effectiveness, efficiency, and ease of integration. Call
rewinding aligns well with these requirements, offering a
hardware-based solution that requires no modifications
to existing binaries and with no footprint on memory.
By leveraging return address prediction mechanisms,
call rewinding can further optimize performance without
sacrificing security.

However, as noted in the original paper [2], call rewind-
ing suffers from false positives in supervisor (S) mode,
and the authors have identified one in user (U) mode as
well, handled in the exception routine. Since call rewind-
ing cannot be enabled or disabled by software, this can
lead to safety issues if unresolved bugs are reported in
the kernel or applications. In this respect, the open
nature of the RISC-V ecosystem is a strong asset: call
rewinding can benefit from the rules of the software envi-
ronment defined in the Zicfiss specifications, as both are
subject to similar constraints. As a concrete example, a
first step towards a safe and secure implementation of
call rewinding checks could be to enable and disable via
writes to a control and status register (CSR) with the
granularity of privilege modes.

Another aspect worth noting is the impact of imple-
menting call rewinding on the ISA. Although it does not

require any custom instructions, call rewinding changes
the behavior of the ret pseudo-instruction (which ex-
tends to jalr x0, 0(x1)). The use of register x1 to
hold the return address is defined in the standard appli-
cation binary interface (ABI), and the Zicfiss extension
is designed to work best with this configuration. Call
rewinding, on the other hand, only works with this con-
figuration, and any other register used as a link register
will not trigger the security checks.

Future work should explore further refinements, such
as extending call rewinding to support additional call-
ing conventions and investigating its integration with
other control-flow integrity (CFI) techniques. By ad-
dressing these issues, call rewinding can play a critical
role in enhancing processor security while maintaining
the high performance required in modern computing
environments.

Perspectives

As the threat landscape continues to evolve, further re-
search will be needed to adapt call rewinding to safety
and security requirements of today’s systems. It has
the potential to be used in standalone mode and pro-
vide a really interesting tradeoff between security and
performance and resource impact, and in that sense be
an alternative to the Zicfiss extension. However, both
could work together, especially in the case of dynamically
loaded libraries not compiled with the Zicfiss extension,
where call rewinding could fill the gap. Collaboration
within the open source community will be key to en-
suring continuous improvement, fostering innovation,
and promoting the specification of call rewinding as a
fundamental security feature.

References

[1] Hovav Shacham. “The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86)”.
In: Proceedings of the 14th ACM Conference on Computer
and Communications Security. CCS ’07. Alexandria, Virginia,
USA: Association for Computing Machinery, 2007, 552-561.
ISBN: 9781595937032. por: 10.1145/1315245.1315313. URL:
https://doi.org/10.1145/1315245.1315313.

[2] Téo Biton et al. “Call Rewinding: Efficient Backward Edge
Protection”. In: TJACR Transactions on Cryptographic Hard-
ware and Embedded Systems 2025.1 (2025), pp. 227-250.

[3] SS-LP-CFI Task Group. RISC-V Shadow Stacks and Landing
Pads, Document Version 1.0.0. 2024.

RISC-V Summit Europe, Paris, 12-15th May 2025


https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313

	Introduction to Call Rewinding
	Positioning with Zicfiss Extension
	Towards RISC-V Specification
	Perspectives

