
© Axiomise Limited 2025. All rights reserved.

Making RISC-V Market Ready

Dr. Ashish Darbari
Founder & CEO
Axiomise

The Economic Case for Formal Verification

© Axiomise Limited 2025. All rights reserved.

Verification trends
Wilson research reports 2022-2024

75%

IC/ASIC projects
run behind
schedule

60-80%

Overall verification
costs

86%

ASICs require two
or more respins

62%

Logical/Functional flaws causing re-spins in
designs (>1B gates)

83%
FPGA designs with

non-trivial bug escapes

1030 simulation cycles not finding bugs

© Axiomise Limited 2025. All rights reserved.

Verification trends
Wilson research reports 2024

© Axiomise Limited 2025. All rights reserved.

Formal verification services
Scaling formal for big designs – enabling end-to-end sign-off

The Axiomise team has experience in verifying over 150 designs

DMA controller
Multi-threaded processor
Bus bridges (AXI/CHI/OCP/TileLink)
Cache sub-systems
GPU shaders
I2C/USB/HDMI/I2S
Network-on-chip
AI/ML accelerator
Ethernet Switch
Mixed-signal
Low-power
Power controller

150+

© Axiomise Limited 2025. All rights reserved.

Why is chip verification hard?
Why bugs escape to silicon?

© Axiomise Limited 2025. All rights reserved.

A holistic approach is missing
A unifying perspective is missing

DESIGN/MICROARCHITECTURE

ARCHITECTURE

NETLIST

SILICON

Architectural Micro-architectur
al

Securit
y X-propagatio

n

Lockstep
verification

Deadloc
k

Powe
r

© Axiomise Limited 2025. All rights reserved.

Modern-day processors

Pipelining Interlocking Forwarding

Branches Jumps Exceptions

Stalls Interrupts Debug

Extensions Clock gating Arithmetic

Power Safety Security

Massively optimised

© Axiomise Limited 2025. All rights reserved.

Complex control and data dependencies

Branches:
• Speculative branches
• Forward jumps, Backward jumps, Page size jumps, Page boundary jumps,

Jumps across pages (same or different pages)

Back-to-back memory operations:
• Cache hits & cache misses
• Write-through stores
• Cache bypasses, atomics and cache coherency

Cores have in-order or out-of-order behaviour?

© Axiomise Limited 2025. All rights reserved.

Accelerating debug and sign-off for custom designs using exhaustive
formal

© Axiomise Limited 2025. All rights reserved.

Our formal RISC-V solution

1. No test case to write
2. No manual checker to write
3. No verification code to be written
4. Exhaustively prove that all ISA instructions work as expected under all conditions
What goes in our APP?

1. Your RISC-V core
2. Set up file
3. Coverage specification

What comes out?
 Exhaustive proofs that “mathematically” prove under all conditions:

Each instruction in the ISA works always as expected
Scenarios specified in the coverage specification can “always” happen
Visualize that scenarios in the coverage specification “can happen”

Enables adoption of formal methods more widely

© Axiomise Limited 2025. All rights reserved.

RTL SETUP

Setup 9 Julycv32e40p 9 July

cv32e40p 3 Dec Setup 3 Dec

BUGS, PROOFS of BUG ABSENCE & INTER-OPERABLE
COVERAGE MODEL

Agile formal verification for end-to-end sign-off
Saving simulation time, obtaining exhaustive proofs, finding corner-case bugs

© Axiomise Limited 2025. All rights reserved.

ibex
Complete democracy – use any tool you like

© Axiomise Limited 2025. All rights reserved.

Formal verification
Agile bug hunting and proofs of bug absence

© Axiomise Limited 2025. All rights reserved.

Specification bugs in RISC-V ISA
Inconsistencies in the RISC-V ISA v2.2

Page 104

Page 30

https://github.com/openhwgroup/cv32e40p/issues/55
1

© Axiomise Limited 2025. All rights reserved.

ibex zeroriscy cv32e40p WARP-V cheriot-ibex

Pipeline
stages

2-stage 2-stage 4-stage 6-stage 4-stage 2-stage 2-stage

No. of issues 65 77 5 30 30 30 6

Previously
verified

Yes Yes No Yes Yes Yes Yes

How was it
previously
verified?

Simulation Simulation Simulation &
Formal

Formal Formal Formal Simulation &
Formal

Time taken to
find issues

< 30 seconds < 30 seconds < 30 seconds < 30 seconds < 30 seconds < 30 seconds <1 min

Nature of
analysis and
issues

Microarchitectural
Deadlocks and
Architectural

Microarchitectural
Deadlocks and
Architectural

Architectural Architectural Architectural Architectural Corner-case bugs

When was the
issue found?

2019 2019 2020 2021 2021 2021 2024

© Axiomise Limited 2025. All rights reserved.

cv32e40p
32-bit, 4-stage in-order pipeline

© Axiomise Limited 2025. All rights reserved.

CVA6
64-bit six-stage, in-order issue, out-of-order execution, in-order commit

From the OPENHW Group Page

CVA6 is a 6-stage, single issue, in-order CPU which implements the 64-bit RISC-V instruction set.
It fully implements I, M, A and C extensions as specified in Volume I: User-Level ISA V 2.3 as well
as the draft privilege extension 1.10. It implements three privilege levels M, S, U to fully support
a Unix-like operating system. Furthermore, it is compliant to the draft external debug spec 0.13.
It has configurable size, separate TLBs, a hardware PTW and branch-prediction (branch target
buffer and branch history table). The primary design goal was on reducing critical path length.

© Axiomise Limited 2025. All rights reserved.

From the OPENHW Group Page

CVA6 is a 6-stage, single issue, in-order CPU which implements the 64-bit RISC-V instruction set.
It fully implements I, M, A and C extensions as specified in Volume I: User-Level ISA V 2.3 as well
as the draft privilege extension 1.10. It implements three privilege levels M, S, U to fully support
a Unix-like operating system. Furthermore, it is compliant to the draft external debug spec 0.13.
It has configurable size, separate TLBs, a hardware PTW and branch-prediction (branch target
buffer and branch history table). The primary design goal was on reducing critical path length.

CVA6
64-bit six-stage, in-order issue, out-of-order execution, in-order commit

© Axiomise Limited 2025. All rights reserved.

i-RADAR Debug
Intelligent Rapid Analysis Debug and Reporting

© Axiomise Limited 2025. All rights reserved.

Intelligent debug
Waveforms, reports

© Axiomise Limited 2025. All rights reserved.

Intelligent debug
Waveforms, reports

© Axiomise Limited 2025. All rights reserved.

SURF Reporting
Scheduler and Reporter for Formal

© Axiomise Limited 2025. All rights reserved.

SURF dashboard
RISC-V

© Axiomise Limited 2025. All rights reserved.

SURF dashboard
RISC-V

© Axiomise Limited 2025. All rights reserved.

SURF dashboard
Example reporting bugs

© Axiomise Limited 2025. All rights reserved.

SURF dashboard
Example reporting bugs

© Axiomise Limited 2025. All rights reserved.

Anatomy of bugs
Processor bugs caught by formalISA

© Axiomise Limited 2025. All rights reserved.

BEQ failure

ibex
Functional verification - ibex

Bug caused due to incoming debug request on the debug interface when the controller is in the DECODE state.

Nothing in the design to take care of such requests, causing the PC to be not updated correctly.

© Axiomise Limited 2025. All rights reserved.

BEQ failure
Functional verification - ibex

Only seen when debug arrives and the controller FSM is in the DECODE state.

Precise timing of arrival of debug makes this bug really hard to catch in dynamic
simulation.

Formal catches it in seconds in 7 cycles!

© Axiomise Limited 2025. All rights reserved.

Issues
• Sending the illegal instruction request to the memory.
• Wasted execution power.
• Invalid data in the register file and subsequently in memory.

Illegal instruction handling
cheriot-ibex: Verified in September 2024 The illegal instruction affected the execution of the valid instruction that

followed it.

The illegal load instruction affected the execution of
the valid AND (or any R-TYPE) instruction that

followed it.

© Axiomise Limited 2025. All rights reserved.

Illegal instruction handling – bit manipulation
After the first bug fix, bit manipulations instructions were broken

https://github.com/microsoft/cheriot-ibex/issues/51

© Axiomise Limited 2025. All rights reserved.

WARP-V
Six stage pipelined processor with a range of bugs

https://github.com/darbaria/axiomise-warpv-formal-6-stage/issues

30 bugs filed

© Axiomise Limited 2025. All rights reserved.

Memory subsystem
Caught by our formalISA

© Axiomise Limited 2025. All rights reserved.

Cache issues
Bugs hard to catch with simulation

© Axiomise Limited 2025. All rights reserved.

Cache issues
Bugs hard to catch with simulation

© Axiomise Limited 2025. All rights reserved.

Cache issues
Bugs hard to catch with simulation

© Axiomise Limited 2025. All rights reserved.

Cache issues
Incorrect validation of cache line due to the bypass store

© Axiomise Limited 2025. All rights reserved. © Axiomise Limited 2025. All rights reserved.

© Axiomise Limited 2025. All rights reserved.

footprint Results
Open-source designs

© Axiomise Limited 2025. All rights reserved.

Why Axiomise formal verification matters?
Covering the entire spectrum of verification requirements

High Proof
Convergence

Bugs & Exhaustive
Proofs

Innovation in
Abstractions

Scalable Proof
Engineering

High Quality
Sign-off

So that you have
higher

confidence

Making sure your
design is bug

free

Allowing you to
have the highest
quality designs,
without re-spin

Our solutions
scale as your
designs do

Functional
Safety

Security
PPA

We find bugs that no-one else can; nobody gets proof convergence like us

© Axiomise Limited 2025. All rights reserved.

Cost of Failure is Expensive
https://www.perforce.com/blog/mdx/semiconductor-startups#cost-of-failure-for-semiconductor-startup
s

© Axiomise Limited 2025. All rights reserved.

Summary

Bugs caught late in the design cycle result in costly fixes and catastrophic failures

Formal enables efficient bug hunting, a natural for shift-left paradigm

Exhaustiveness establishes ”proofs of bug absence” avoiding respins

1030 simulation cycles are not going to find bugs that formal finds in 7 cycles

Mantra for success:

Architects use formal for validation

Designers use formal for verification

Verification Engineers use formal for IP and sub-system level, simulation for interfaces

Formal methods is a necessity to reduce costs

© Axiomise Limited 2025. All rights reserved.

© Axiomise Limited 2025. All rights reserved.

www.axiomise.com
CONSULTING & SERVICES

TRAINING
CUSTOM SOLUTIONS
info@axiomise.com

