VeriCHERI: Exhaustive Security Verification of CHERI Processors

Speaker: Tobias Jauch

RISC-V Summit Europe

12. – 15.05.2025, Paris

Anna Lena Duque Antón, Johannes Müller, Philipp Schmitz, Tobias Jauch, Alex Wezel, Lucas Deutschmann, Mohammed R. Fadiheh, Dominik Stoffel, and Wolfgang Kunz

Goal: robust and trustworthy security mechanisms

Major challenge: memory safety

Solution: Capabilities / CHERI

CHERI

Solution: Capabilities / CHERI

Capability Hardware Enhanced RISC Instructions

Fine-grained memory protection in hardware

Gaining traction in industry

CHERI

Comprehensive security verification necessary

Related verification approaches:

Verification based on a formal ISA model, rendering a high manual effort [Nienhuis et al., Grisenthwaite et al.]

Functional correctness proofs, automatically derived from the SAIL specification [Ploix et al.]

Manual translation of functional security properties might not cover every aspect and corner case of the design

Security verification based on time-abstract ISA models misses non-functional vulnerabilities (timing side channels)

VeriCHERI

Proves global security objectives (confidentiality, integrity)

Uses the timing-accurate RTL impementation

Attacker Model

Security Objective

Goal:

Prove global security objectives (confidentiality, integrity)

Approach:

> Model security objectives using non-interference

Security Objective

> Model security objectives using non-interference

Strong notion of security

Well known and widely adapted

Non-Interference

Formal Model

Confidentiality non-interference CTL-property:

AG(
$$\$M_{pub} = \$M'_{pub} \land \$P = \$P'$$

 $\rightarrow AG(\$M_{pub} = \$M'_{pub} \land \$P = \$P')$)

Integrity non-interference CTL-property:

$$AG(\$M_{prot} = \$M'_{prot} \rightarrow AG(\$M_{prot} = \$M'_{prot}))$$

Formal Model

Interval Properties

Confidentiality interval property:

```
t : cheri_protected(symbolic_addr)
implies
t: !read_mem ||
   mem_addr != symbolic_addr
```

Integrity interval property:

```
t : cheri_protected(symbolic_addr)
implies
t: !write_mem ||
   mem_addr != symbolic_addr
```

Interval Properties

> Properties describe the behavior in a single clock cycle

Scalable proofs

Cover every possible compartmentalization and program

Interval Properties

? What if the property fails?

Confidentiality property is a sufficient, but not a necessary condition for security

Protected data could propagate to internal buffers that are not attacker visible, without causing a leakage

UPEC-CHERI

? What if the property fails?

We define a less conservative 2-safety property for confidentiality to cover such scenarios

Reformulation of UPEC [Fadiheh et al.] to match our CHERIspecific threat model

Case Study: CHERIOT-IBEX Processor

Property	Iteration	Result	Runtime	Memory	Description
1-safety-integrity	1	fail	< 1 min	4.3 GB	Bug: setup guide specification of protection enable pin
	2	fail	< 1 min	4.7 GB	Bug: capability stores across capability bounds
	3	hold	7 min	4.8 GB	-
1-safety-confidentiality					
→ data	1	hold	7 min	7.3 GB	-
\longrightarrow instructions	1	fail	< 1 min	4.8 GB	Instruction fetched from outside PCC bounds
UPEC-CHERI	1	fail	31 min	3.7 GB	Side channel: exception timing depends on fetched data
	2	hold	18 min	6.3 GB	-

Case Study: CHERIOT-IBEX Processor

VeriCHERI detected a potential Transient Execution Attack

Branch to address outside PCC bounds

Exception raised, but delayed depending on two fetched bits

Performance counter changes based on the two bits

Case Study: CHERIOT-IBEX Processor

VeriCHERI detected a potential Transient Execution Attack

By measuring the execution time, an attacker can probe two bits of an arbitrary protected address

Confirmed and fixed by CHERIOT development team

Conclusion

VeriCHERI detected several new security issues

Scalable, iterative verification flow

Symbolic verification IP for CHERIOT can be reused for similar designs

Thank you for your attention!

Contact me at: tobias.jauch@rptu.de

VeriCHERI at ICCAD'24

CHERIOT blogpost on detected vulnerability

This work was supported partly by **BMBF** Scale4Edge (16ME0122K-16ME0140+16ME0465), by **Intel** Corp., Scalable Assurance Program, by **Siemens EDA** and by **DFG** SPP NanoSecurity (KU1051/11-2). We thank the CHERIOT Ibex development team for their valuable feedback.

Appendix

