
The RISE Project:
Advancing RISC-V Software
Ludovic Henry, RISE TSC
Nathan Egge, RISE TSC

May 2025

Mobilizing Software Ecosystem for Growth

Collaboration &
Community
Engagement

Continuous
Software Porting
and Optimization

Investing in the
 Software Stack
Fundamentals

2

How: Working Upstream, Transparently
Open and Transparent Organization

Coordinating contributions

Bringing open source communities together

Raise

RISC-V platform quality

Ensure

RISC-V is tier 1 for tools and
libraries

Align

Ecosystem partners efforts for
adoption

Collaboration: RISE (RISC-V Software Ecosystem)

3

RISE Members
Premier Members

General Members

Additional Information: https://riseproject.dev/
4

https://riseproject.dev/

Coordination and collaboration among the RISE members is across an array of software areas
to deliver high quality and high performance implementations for RISC-V software

Check out the RISE Wiki: https://wiki.riseproject.dev/

RISE Software Focus Areas

5

Compilers & Toolchains LLVM, GCC, GLIBC

System Libraries FFmpeg, OpenBLAS, oneDAL, XNNPACK, oneDNN

Kernel & Virtualization Linux, Android

Language Runtimes Python, Java/OpenJDK, Go, JavaScript/V8, WebAssembly, Rust, .NET

Linux Distro Integration Ubuntu, Debian, RedHat, Fedora, Alpine, RockyLinux, AlmaLinux, Gentoo

Debug & Profiling Tools Performance Profiles, DynamoRIO, Valgrind

Simulators/Emulators QEMU, SPIKE

System Firmware UEFI, U-Boot, Coreboot, TF-M

Developer Infrastructure Build Farm, Board Farm, Developer Tools

Security Software Secure Root-of-Trust, Confidential Compute

AI/Machine Learning PyTorch, TensorFlow, TFLite, Llama.cpp

https://wiki.riseproject.dev/

Open source accelerates AI
development and ensures a
transparent RISC-V ecosystem

RISE AI/ML Working Group drives
collaboration on PyTorch,
TensorFlow, TFLite and Llama.cpp

Enhancing AI software performance
strengthens RISC-V’s position as a
competitive AI Platform

Recent RFPs Focus on:

AI/ML Working Group

Optimization of
PyTorch, OpenBLAS,

and oneDNN for
RISC-V

Develop and upstream a
high-performance RVV
1.0 port of Llama.cpp

6

RFP Highlighted Results
LLVM SPEC optimization
Reduces execution time by 15% on SPEC CPU®
2017-based benchmark on SpacemiT-X60
Improved Vectorization Efficiency, better Register
Allocation, and more work to be done

Go
Compiler Optimization: expanding RVV and bitmanip
support, implementing math and crypto intrinsics
Releases available since Go 1.21 at https://go.dev/dl

Python Packaging
Building packages for commonly used projects
https://gitlab.com/riseproject/python/

Rust
On track to meet full Tier-1 requirements

QEMU TCG
Enhanced performance for vector (V) and
crypto (Zvk) extensions; faster emulation
and CI/CD. Achieved 2x faster memory
operations and halved AOSP boot time.

OpenOCD
RISC-V support upstreaming

LLVM CI
Leveraged QEMU-based testing to
support profiles and optimized build
configurations.

https://go.dev/dl
https://gitlab.com/groups/riseproject/python/-/packages

Developer Infrastructure
Build Farm

● Integration to Kernel and GCC CI: more testing to improve quality
● Increase quality while landing large autovectorization changes in GCC with

pre-commit and post-commit automated testing
○ 137 bugs found and fixed with fuzzing
○ 792 post-commit builds, 400+ patches tested pre-commit
○ Fixing compiler bugs affecting SPEC

Board Farm

● Some usage of Scaleway EM-RV1
● Partnership with Eclipse Adoptium

○ Released Java 17, 21, 23 and later

Developer Appreciation Program
Rewarding Developers who port Software to RISC-V

● 500€ for Small contributions, 3000€ for Large contributions
● File an issue: https://github.com/rise-dev-appreciation

Rewarded contributions

● Gem5 - Support for H Extension and SVNAPOT - #5 #12
● Delve - A Go debugger - #8
● VOLK 🌋 - Vector-Optimized library used by GNU Radio project - #11
● syscall_intercept - User-space interception of system calls - #9
● Lightening - Template based JIT library - #10
● SIMD Everywhere - Portable SIMD library - #4
● MAMBO - Dynamic binary instrumentation and modification - #3

https://github.com/Rise-dev-appreciation/Rise-dev-appreciation
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/5
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/12
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/8
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/11
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/9
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/10
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/4
https://github.com/Rise-dev-appreciation/Rise-dev-appreciation/issues/3

Project Goals

● Turn-key images to jump-start developers
with latest toolchains:
○ gcc-15.1 clang-20.1.3 rust-1.86 glibc-2.41 cmake-3.31, etc.

● Produce images quickly for RVV hardware
○ Kernel + U-Boot + OpenSBI + 409 packages in less than 5 hours

● Bespoke CFLAGS for each devboard platform
○ Now building with -O3 -march=rv64_zvl256b
○ Surfaced and filed many GCC bugs 116242 [meta-bug] zvl issues in RISC-V

● Talk to us about adding your devboard!

[1] Canaan K230 https://people.videolan.org/~negge/canaan-3G-2024-04-08.img.xz
[2] BPI F3 / ROMA II https://dev.gentoo.org/~lu_zero/riscv/gentoo-linux-k1_dev-sdcard-2.1.0-20250411-rvv.img.xz
[3] Orange Pi RV2 https://people.videolan.org/~negge/gentoo-linux-x1_dev-sdcard-20250422-rvv.img.xz

Gentoo Developer Images

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=116242
https://people.videolan.org/~negge/canaan-3G-2024-04-08.img.xz
https://dev.gentoo.org/~lu_zero/riscv/gentoo-linux-k1_dev-sdcard-2.1.0-20250411-rvv.img.xz
https://people.videolan.org/~negge/gentoo-linux-x1_dev-sdcard-20250422-rvv.img.xz

RISC-V Optimization Guide

● https://gitlab.com/riseproject/riscv-optimization-guide

RISE Case Study: Adding RVV 1.0 to dav1d AV1 decoder

● Part 1 - 2023-Oct-31, Part 2 - 2023-Nov-14, Part 3 - 2024-Mar-14
● RISCV-Summit EU 2024 Optimizing Software for RISC-V (slides)
● RISC-V 101 2024 (slides) RISC-V 101 2025 (slides)

Python Packaging

● https://gitlab.com/riseproject/python/
● 49 Python projects made available on RISC-V, and counting

Developer Resources

https://gitlab.com/riseproject/riscv-optimization-guide
https://docs.google.com/presentation/d/1H8o9shlD-_iVEBrgtQxnaX523UtGxic3vLSQYfuO3LQ/
https://docs.google.com/presentation/d/1IjJAphV7DwFSv9GTr0DQFkxhbXnaA3DwlZX2e3G7Jps/
https://docs.google.com/presentation/d/1j_RBLpoTYoO4Lo8ff1cnrG-EnS8qSTUdbfaBP6pkTGA/
https://www.youtube.com/watch?v=asRnBcn5VKs
http://people.videolan.org/~negge/Optimizing%20Software%20for%20RISC-V.pdf
http://people.videolan.org/~negge/riscv101.pdf
http://people.videolan.org/~negge/riscv101-2025.pdf
https://gitlab.com/groups/riseproject/python/-/packages

How RISE is
Contributing

 Activate Broader Developer Community

How you can
get involved

Becoming a member

Request For Proposals (RFPs)

Developer Appreciation Program

Foster Public Open Source Standard Collaboration

Establish Developer Infrastructure

Shared Vision for Future

Building Stronger RISC-V Software Ecosystem Together

