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CVA61 is a configurable 64/32 bit RISC-V core originally developed by the PULP 
Platform and now maintained by OpenHW Group with the support of multiple 
industrial and academic partners:
➔ 6-stage pipeline: two-stage Instruction Fetch (IF), Instruction Decode (ID), 

Instruction Issue (IS), Instruction Execute (IE), and Writeback (WB)
➔ In order dispatch, out of order completion, in order commit

1F. Zaruba, "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE VLSI, 2019
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automation, and aerospace is driving the need for high-performance CPUs

➔ An increasing number of open-source RISC-V cores are targeting 
high-performance applications, including BlackParrot, BOOM, XiangShan, and 
Xuantie C910

https://doi.org/10.1109/TVLSI.2019.2926114
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CVA6S2 is the superscalar dual-issue version of CVA6 by Thales, making the 
core suitable for more demanding workloads

2C. Allart, "Using a Performance Model to Implement a Superscalar CVA6", ACM CF'24

➔ ×2 instruction fetch width
➔ ×2 decoding and issue logic
➔ Secondary ALU

https://doi.org/10.1145/3637543.3652871
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We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming
➔ Improved branch predictor
➔ ALU-ALU forwarding
➔ FPU integration in superscalar mode

Moreover, we integrate and evaluate CVA6S+ with the the OpenHW Core-V 
High-Performance L1 Data Cache (HPDCache)
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What can be further improved?

FPU support was out of 
scope for CVA6S
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The evaluation is based on 
the Embench-IoT suite

Branch mispredictions cause the 
instruction queue to be empty

Use a better branch predictor
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The evaluation is based on 
the Embench-IoT suite

Instruction dependencies cause 
single-issuing

Introduce ALU-ALU forwarding to 
dual issue interdependent ALU 
operations
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The evaluation is based on 
the Embench-IoT suite

Write-After-Write hazards are a 
significant cause of pipeline stalls

Introduce register renaming to 
remove WAWs
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(PHBHT) predictor
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Register renaming to eliminate 
Write-After-Write hazards
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Floating Point support 
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ALU0

ALU1

➔ The ALUs operate separately when 
dual-issuing independent instructions

➔ The ALUs are chained when 
dependent instructions can be fused

➔ Selected few operations are never 
chained to preserve the critical path
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The Embench-IoT suite focuses on 
the pipeline:
➔ All the cores use the same cache 

configuration
➔ The working set is fully cached

+43.5% IPC versus baseline CVA6

+10.9% IPC versus CVA6S
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Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration

+9%

+28%

to obtain 43.5% IPC improvement

Pipeline area delta: +28%
Total area delta: +9%
Max. Frequency: 1090 MHz
(-0.5% vs CVA6)
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The existing data cache 
subsystem is blocking
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➔ Performance-Optimized Design: 
features pipelined micro-architecture, 
single-cycle read/write hit latency

➔ Out-of-Order Execution & 
Non-Blocking: handles requests 
out-of-order to avoid head-of-line 
blocking

➔ Highly Configurable Architecture: 
supports both WB and WT policies on a 
cache line-level granularity, includes 
configurable associativity, request port 
count and data widths

3C. Fuguet, "HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V Cores", ACM CF'23

https://dx.doi.org/10.1145/3587135.3591413
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The RaiderSTREAM suite focuses on 
the cache subsystem:
➔ The same CVA6S+ pipeline is 

tested with the legacy D$ and 
the HPDCache

➔ The working set is 2× the cache 
capacity

+74.1% bandwidth by replacing 
the legacy D$ with the HPDCache
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Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner
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Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ Legacy Cache versus HPDCache
➔ Same pipeline configuration

Cache area reduction: -18.9% 
due to better SRAM organization
while providing +74.1% bandwidth!

-18.9%
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Conclusion

➔ We introduce CVA6S+, adding key features upon CVA6S, the superscalar 
dual-issue extension of the CVA6 RISC-V application-class core CVA6

➔ We integrate CVA6S+ with the OpenHW Core-V High-Performance L1 Data 
Cache HPDCache

➔ We demonstrate 10.9% and 43.5% IPC improvement over CVA6S and CVA6, 
respectively, with an area overhead of less than 10% and only 0.5% 
maximum frequency regression

➔ We showcase the benefit of adopting the HPDCache, which improves the 
bandwidth by 74.1% and reduces the cache area by 18.9%
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