
pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

CVA6S+: A Superscalar RISC-V Core with 
High-Throughput Memory Architecture
Riccardo Tedeschi1, Gianmarco Ottavi1, Côme Allart2,3, Nils Wistoff4, Zexin Fu4,
Filippo Grillotti5, Fabio De Ambroggi5, Elio Guidetti5, Jean-Baptiste Rigaud3,
Olivier Potin3, Jean Roch Coulon2, César Fuguet6, Luca Benini1,4, Davide Rossi1

University of Bologna, Italy1 Thales DIS, France2

Mines Saint-Etienne, France3 ETH Zürich, Switzerland4

STMicroelectronics, Italy5 Inria, France6



Introduction: RISC-V high-performance open cores

2

➔ The growing demand for autonomy in critical fields like automotive, industrial 
automation, and aerospace is driving the need for high-performance CPUs



Introduction: RISC-V high-performance open cores

3

➔ The growing demand for autonomy in critical fields like automotive, industrial 
automation, and aerospace is driving the need for high-performance CPUs

➔ An increasing number of open-source RISC-V cores are targeting 
high-performance applications, including BlackParrot, BOOM, XiangShan, and 
Xuantie C910



Introduction: RISC-V high-performance open cores

4

CVA61 is a configurable 64/32 bit RISC-V core originally developed by the PULP 
Platform and now maintained by OpenHW Group with the support of multiple 
industrial and academic partners:

1F. Zaruba, "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE VLSI, 2019

➔ The growing demand for autonomy in critical fields like automotive, industrial 
automation, and aerospace is driving the need for high-performance CPUs

➔ An increasing number of open-source RISC-V cores are targeting 
high-performance applications, including BlackParrot, BOOM, XiangShan, and 
Xuantie C910

https://doi.org/10.1109/TVLSI.2019.2926114


Introduction: RISC-V high-performance open cores

5

CVA61 is a configurable 64/32 bit RISC-V core originally developed by the PULP 
Platform and now maintained by OpenHW Group with the support of multiple 
industrial and academic partners:
➔ 6-stage pipeline: two-stage Instruction Fetch (IF), Instruction Decode (ID), 

Instruction Issue (IS), Instruction Execute (IE), and Writeback (WB)

1F. Zaruba, "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE VLSI, 2019

➔ The growing demand for autonomy in critical fields like automotive, industrial 
automation, and aerospace is driving the need for high-performance CPUs

➔ An increasing number of open-source RISC-V cores are targeting 
high-performance applications, including BlackParrot, BOOM, XiangShan, and 
Xuantie C910

https://doi.org/10.1109/TVLSI.2019.2926114


Introduction: RISC-V high-performance open cores

6

CVA61 is a configurable 64/32 bit RISC-V core originally developed by the PULP 
Platform and now maintained by OpenHW Group with the support of multiple 
industrial and academic partners:
➔ 6-stage pipeline: two-stage Instruction Fetch (IF), Instruction Decode (ID), 

Instruction Issue (IS), Instruction Execute (IE), and Writeback (WB)
➔ In order dispatch, out of order completion, in order commit

1F. Zaruba, "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology", IEEE VLSI, 2019

➔ The growing demand for autonomy in critical fields like automotive, industrial 
automation, and aerospace is driving the need for high-performance CPUs

➔ An increasing number of open-source RISC-V cores are targeting 
high-performance applications, including BlackParrot, BOOM, XiangShan, and 
Xuantie C910

https://doi.org/10.1109/TVLSI.2019.2926114


Background: from CVA6 to CVA6S

CVA6 IPC (Instructions Per Clock) is constrained by its simple, scalar in-order 
front-end microarchitecture

7

2C. Allart, "Using a Performance Model to Implement a Superscalar CVA6", ACM CF'24

https://doi.org/10.1145/3637543.3652871


Background: from CVA6 to CVA6S

CVA6 IPC (Instructions Per Clock) is constrained by its simple, scalar in-order 
front-end microarchitecture

8

CVA6S2 is the superscalar dual-issue version of CVA6 by Thales, making the 
core suitable for more demanding workloads

2C. Allart, "Using a Performance Model to Implement a Superscalar CVA6", ACM CF'24

https://doi.org/10.1145/3637543.3652871


Background: from CVA6 to CVA6S

CVA6 IPC (Instructions Per Clock) is constrained by its simple, scalar in-order 
front-end microarchitecture

9

CVA6S2 is the superscalar dual-issue version of CVA6 by Thales, making the 
core suitable for more demanding workloads

2C. Allart, "Using a Performance Model to Implement a Superscalar CVA6", ACM CF'24

➔ ×2 instruction fetch width
➔ ×2 decoding and issue logic
➔ Secondary ALU

https://doi.org/10.1145/3637543.3652871


Contribution: from CVA6S to CVA6S+

10

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:



Contribution: from CVA6S to CVA6S+

11

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming



Contribution: from CVA6S to CVA6S+

12

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming
➔ Improved branch predictor



Contribution: from CVA6S to CVA6S+

13

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming
➔ Improved branch predictor
➔ ALU-ALU forwarding



Contribution: from CVA6S to CVA6S+

14

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming
➔ Improved branch predictor
➔ ALU-ALU forwarding
➔ FPU integration in superscalar mode



Contribution: from CVA6S to CVA6S+

15

We present CVA6S+, which builds on the CVA6S microarchitecture with key 
enhancements aimed at further boosting performance:
➔ Register renaming
➔ Improved branch predictor
➔ ALU-ALU forwarding
➔ FPU integration in superscalar mode

Moreover, we integrate and evaluate CVA6S+ with the the OpenHW Core-V 
High-Performance L1 Data Cache (HPDCache)



CVA6S: the baseline

16



CVA6S: the baseline

17

FPU support was out of 
scope for CVA6S



CVA6S: the baseline

18

What can be further improved?

FPU support was out of 
scope for CVA6S



CVA6S: performance analysis

19

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite



CVA6S: performance analysis

20

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Branch mispredictions cause the 
instruction queue to be empty



CVA6S: performance analysis

21

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Branch mispredictions cause the 
instruction queue to be empty

Use a better branch predictor



CVA6S: performance analysis

22

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Instructions are dual issued 
already for 30% of the cycles



CVA6S: performance analysis

23

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Instruction dependencies cause 
single-issuing



CVA6S: performance analysis

24

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Instruction dependencies cause 
single-issuing

Introduce ALU-ALU forwarding to 
dual issue interdependent ALU 
operations



CVA6S: performance analysis

25

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Write-After-Write hazards are a 
significant cause of pipeline stalls



CVA6S: performance analysis

26

Ev
en

ts
/c

yc
le

The evaluation is based on 
the Embench-IoT suite

Write-After-Write hazards are a 
significant cause of pipeline stalls

Introduce register renaming to 
remove WAWs



CVA6S+: what’s new?

27



CVA6S+: Private History Predictor

28

Private History Branch History Table 
(PHBHT) predictor



CVA6S+: Private History Predictor

29

Legacy BHT predictor
2-bit per entry

Branch PC
log

2
(entries) bits

Branch History Table
0 1

23

Taken

Not Taken

2



CVA6S+: Private History Predictor

30

Branch PC
log

2
(entries) bits

NT T NT

Private History Table Saturation Counters

0 1

23

Taken

Not Taken

Legacy BHT predictor
2-bit per entry

New PHBHT predictor
with n bits history
n + (2n * 2) bits per entry

Branch PC
log

2
(entries) bits

Branch History Table
0 1

23

Taken

Not Taken

2

NT,T,NT

2



CVA6S+: Renaming Scheme

31

Register renaming to eliminate 
Write-After-Write hazards



CVA6S+: Renaming Scheme

32

1 10
1 11
1
0
0
0
1 5
1 12

7
6
5
4
3
2
1
0

Valid rdID

12

➔ The scoreboard is a 
circular buffer

➔ RAW hazards need to 
know the newest 
instruction to correctly 
forward data

Scoreboard (SB)



CVA6S+: Renaming Scheme

1 10
1 11
1
0
0
0
1 5
1 12

7
6
5
4
3
2
1
0

Valid rdID

12

33

Scoreboard (SB)

➔ The scoreboard is a 
circular buffer

➔ RAW hazards need to 
know the newest 
instruction to correctly 
forward data

Instr. 0 and 5 both 
write register x12



CVA6S+: Renaming Scheme

34

1 10
1 11
1
0
0
0
1 5
1 12

0
0
0
1

1
1
1

SB-ID: 1

7
6
5
4
3
2
1
0

SB-ID: 0
SB-ID: 7
SB-ID: 6
SB-ID: 5

Valid rdID

12

Reorder the 
scoreboard based 
on commit pointer

1

Scoreboard (SB)

➔ The scoreboard is a 
circular buffer

➔ RAW hazards need to 
know the newest 
instruction to correctly 
forward data

Instr. 0 and 5 both 
write register x12



CVA6S+: Renaming Scheme

35

1 10
1 11
1
0
0
0
1 5
1 12

0
0
0
1

1
1
1

SB-ID: 1

7
6
5
4
3
2
1
0

SB-ID: 0
SB-ID: 7
SB-ID: 6
SB-ID: 5

Scoreboard (SB)
Valid rdID

12

Instr. 0 and 5 both 
write register x12

Reorder the 
scoreboard based 
on commit pointer

1

Instr. 0 has higher 
priority than instr. 5

Prio
rity

➔ The scoreboard is a 
circular buffer

➔ RAW hazards need to 
know the newest 
instruction to correctly 
forward data



CVA6S+: Renaming Scheme

36

1 10
1 11
1
0
0
0
1 5
1 12

0
0
0
1

1
1
1

SB-ID: 1

7
6
5
4
3
2
1
0

SB-ID: 0
SB-ID: 7
SB-ID: 6
SB-ID: 5

- x31

x12
6 x11
7 x10
- x9
- x8
- x7
- x6
1 x5
- x4
- x3
- x2
- x1
- x0

Valid rdID

12

Reorder the 
scoreboard based 
on commit pointer

Forwarding logic 
based on SB-ID

1

0

Scoreboard (SB)

➔ The scoreboard is a 
circular buffer

➔ RAW hazards need to 
know the newest 
instruction to correctly 
forward data

Instr. 0 and 5 both 
write register x12

Instr. 0 has higher 
priority than instr. 5



CVA6S+: FPU support

37

Floating Point support 



CVA6S+: ALU-ALU forwarding

38

ALU-ALU forwarding



CVA6S+: ALU-ALU forwarding

39

ALU0

ALU1

➔ The ALUs operate separately when 
dual-issuing independent instructions



CVA6S+: ALU-ALU forwarding

40

ALU0

ALU1

➔ The ALUs operate separately when 
dual-issuing independent instructions



CVA6S+: ALU-ALU forwarding

41

ALU0

ALU1

➔ The ALUs operate separately when 
dual-issuing independent instructions

➔ The ALUs are chained when 
dependent instructions can be fused



CVA6S+: ALU-ALU forwarding

42

ALU0

ALU1

➔ The ALUs operate separately when 
dual-issuing independent instructions

➔ The ALUs are chained when 
dependent instructions can be fused

➔ Selected few operations are never 
chained to preserve the critical path



Pipeline performance: Embench-IoT

43

The Embench-IoT suite focuses on 
the pipeline:



Pipeline performance: Embench-IoT

44

The Embench-IoT suite focuses on 
the pipeline:
➔ All the cores use the same cache 

configuration



Pipeline performance: Embench-IoT

45

The Embench-IoT suite focuses on 
the pipeline:
➔ All the cores use the same cache 

configuration
➔ The working set is fully cached



Pipeline performance: Embench-IoT

46

The Embench-IoT suite focuses on 
the pipeline:
➔ All the cores use the same cache 

configuration
➔ The working set is fully cached

+43.5% IPC versus baseline CVA6

+10.9% IPC versus CVA6S



Area and Timing: performance at what cost?

47

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner



Area and Timing: performance at what cost?

48

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration



Area and Timing: performance at what cost?

49

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration

+28%
Pipeline area delta: +28%



Area and Timing: performance at what cost?

50

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration

+9%

+28%
Pipeline area delta: +28%
Total area delta: +9%



Area and Timing: performance at what cost?

51

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration

+9%

+28%
Pipeline area delta: +28%
Total area delta: +9%
Max. Frequency: 1090 MHz
(-0.5% vs CVA6)



Area and Timing: performance at what cost?

52

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ CVA6S+ versus CVA6
➔ Same caches configuration

+9%

+28%

to obtain 43.5% IPC improvement

Pipeline area delta: +28%
Total area delta: +9%
Max. Frequency: 1090 MHz
(-0.5% vs CVA6)



CVA6S+: what about the cache?

53

The existing data cache 
subsystem is blocking



HPDCache: Open-Source High-Performance L1 D$

54

➔ Performance-Optimized Design: 
features pipelined micro-architecture, 
single-cycle read/write hit latency

3C. Fuguet, "HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V Cores", ACM CF'23

https://dx.doi.org/10.1145/3587135.3591413


HPDCache: Open-Source High-Performance L1 D$

55

➔ Performance-Optimized Design: 
features pipelined micro-architecture, 
single-cycle read/write hit latency

➔ Out-of-Order Execution & 
Non-Blocking: handles requests 
out-of-order to avoid head-of-line 
blocking

3C. Fuguet, "HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V Cores", ACM CF'23

https://dx.doi.org/10.1145/3587135.3591413


HPDCache: Open-Source High-Performance L1 D$

56

➔ Performance-Optimized Design: 
features pipelined micro-architecture, 
single-cycle read/write hit latency

➔ Out-of-Order Execution & 
Non-Blocking: handles requests 
out-of-order to avoid head-of-line 
blocking

➔ Highly Configurable Architecture: 
supports both WB and WT policies on a 
cache line-level granularity, includes 
configurable associativity, request port 
count and data widths

3C. Fuguet, "HPDcache: Open-Source High-Performance L1 Data Cache for RISC-V Cores", ACM CF'23

https://dx.doi.org/10.1145/3587135.3591413


Cache performance: RaiderSTREAM

57

The RaiderSTREAM suite focuses on 
the cache subsystem:



Cache performance: RaiderSTREAM

58

The RaiderSTREAM suite focuses on 
the cache subsystem:
➔ The same CVA6S+ pipeline is 

tested with the legacy D$ and 
the HPDCache



Cache performance: RaiderSTREAM

59

The RaiderSTREAM suite focuses on 
the cache subsystem:
➔ The same CVA6S+ pipeline is 

tested with the legacy D$ and 
the HPDCache

➔ The working set is 2× the cache 
capacity



Cache performance: RaiderSTREAM

60

The RaiderSTREAM suite focuses on 
the cache subsystem:
➔ The same CVA6S+ pipeline is 

tested with the legacy D$ and 
the HPDCache

➔ The working set is 2× the cache 
capacity

+74.1% bandwidth by replacing 
the legacy D$ with the HPDCache



Area and Timing: HPDCache versus Legacy Cache

61

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner



Area and Timing: HPDCache versus Legacy Cache

62

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ Legacy Cache versus HPDCache
➔ Same pipeline configuration



Area and Timing: HPDCache versus Legacy Cache

63

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ Legacy Cache versus HPDCache
➔ Same pipeline configuration

Cache area reduction: -18.9% 
due to better SRAM organization

-18.9%



Area and Timing: HPDCache versus Legacy Cache

64

Evaluation setup:
➔ GF22 nm CMOS technology
➔ Worst timing corner

➔ Legacy Cache versus HPDCache
➔ Same pipeline configuration

Cache area reduction: -18.9% 
due to better SRAM organization
while providing +74.1% bandwidth!

-18.9%



Conclusion

➔ We introduce CVA6S+, adding key features upon CVA6S, the superscalar 
dual-issue extension of the CVA6 RISC-V application-class core CVA6

65



Conclusion

➔ We introduce CVA6S+, adding key features upon CVA6S, the superscalar 
dual-issue extension of the CVA6 RISC-V application-class core CVA6

➔ We integrate CVA6S+ with the OpenHW Core-V High-Performance L1 Data 
Cache HPDCache

66



Conclusion

➔ We introduce CVA6S+, adding key features upon CVA6S, the superscalar 
dual-issue extension of the CVA6 RISC-V application-class core CVA6

➔ We integrate CVA6S+ with the OpenHW Core-V High-Performance L1 Data 
Cache HPDCache

➔ We demonstrate 10.9% and 43.5% IPC improvement over CVA6S and CVA6, 
respectively, with an area overhead of less than 10% and only 0.5% 
maximum frequency regression

67



Conclusion

➔ We introduce CVA6S+, adding key features upon CVA6S, the superscalar 
dual-issue extension of the CVA6 RISC-V application-class core CVA6

➔ We integrate CVA6S+ with the OpenHW Core-V High-Performance L1 Data 
Cache HPDCache

➔ We demonstrate 10.9% and 43.5% IPC improvement over CVA6S and CVA6, 
respectively, with an area overhead of less than 10% and only 0.5% 
maximum frequency regression

➔ We showcase the benefit of adopting the HPDCache, which improves the 
bandwidth by 74.1% and reduces the cache area by 18.9%

68



Q&A

pulp-platform.org

@pulp_platform

youtube.com/pulp_platform

PULP Platform
Open Source Hardware, the way it should be!

Institut für Integrierte Systeme – ETH Zürich
Gloriastrasse 35
Zürich, Switzerland

DEI – Università di Bologna
Viale del Risorgimento 2
Bologna, Italy

Thank you! 
Questions?


