RISC-V Big Endian

CODETHINK

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

https://sif.cdth.io/documentation/sif/latest/factory.html

01
Introduction

Endianness

Most significant byte Least significant byte

What is Endianness?
:]00000000 }0001 1110 0110 0101 \0011 1010

T I I
Memory address 0x05 0x06 0x07 0x08

The order values are
composed in memory

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

Big endian

Big Endian (BE): left-to-right

Little Endian (LE): right-to-left Little endian 3/\‘/ 65/

An easy way to remember: Big/Little endian
stores the Big/Little end of the number in the
first memory address.

https://sif.cdth.io/documentation/sif/latest/factory.html

@ Different Endians? Different Users?

Big Endian: Little Endian:

— Often used in older architectures — X86 chose little endian as at the time,
and applications it made operations such as type
casting is easier (as memory layout
— Many networking protocols use BE. doesn't change)
LE systems have to reverse byte — x86 used it and achieved dominance

order (adding overhead)

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

https://sif.cdth.io/documentation/sif/latest/factory.html
https://sif.cdth.io/documentation/sif/latest/factory.html

@ Why are we interested?

Current state:

— RISC-Vis LE

— Latest ISA specification adds runtime
configurable endianness

— Part of ISA volume I, privileged
architecture

— Configuration added (version 112, 2022)

Definition of Done:

— Overall:
Linux running on Qemu in big endian

— Qemu - Add ability to configure
CSRs and modify data accesses

— OpenSBI - Boot system in big
endian and correctly deal with 10

— Linux = Build minimal kernel
and userland

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

https://sif.cdth.io/documentation/sif/latest/factory.html
https://sif.cdth.io/documentation/sif/latest/factory.html

©

COPYRIGHT CODETHINK | LICENSED UNDER CC-BY SA 4.0

02

QEMU

@ CPU Flags

Goal is to update the CSRs that controls the endian for each execution level
(M/S/U)

- M-mode is controlled by bit 37 (MBE) of the mstatus CSR
— MBE is then read-only cloned into bit 36 (SBE) and bit 6 (UBE)

— CSR writes allowed to mstatus bits

- Writes update new context field: ctx->be_data

— For QEMU: sstatus SBE and UBE are read-only clones of mstatus

- We may add SBE/UBE configuration later

#define MSTATUS_MBE 0x2000000000ULL

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

https://sif.cdth.io/documentation/sif/latest/factory.html

@ Load & Store

Add memory operation flag for load & store operations

if (ctx->be_data) { mop |= MO_BE; }
Same for Zacas extension (Atomic Compare-and-Swap instructions)

FPU follows integer endian

MMU translation follows S mode endian

Some wrangling of byte ordering
cpu_to_le64(), cpu_to_beb64()
be64_to_cpu(), le64_to_cpu()

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

03
Software stack

Software updates

MMIO bus is still little endian - must swap 10 data

Instructions are always little endian

— Hand assembly of instructions can be problematic

— Introspection and runtime modification needs changing

Updated buildroot selection menu to add big endian option

Software such as uclibc needed build updates due to assumed little endian

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

@ OpenSBI

— Updated build to support big endian

— Added an option and corresponding code to change harts to big endian

- Switch M-mode to big endian at start by setting mstatus.MBE bit early in
the initialisation code and when hart is re-initialised

- Added an option to set mstatus. {U, S}BE flags when the hart is initialised
for big endian S and U modes

— Updated 10 code for endian swap

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

@ OpenSBI: config and CSR set patch

diff --git a/Kconfig b/Kconfig
help
Say Y here if you like fun challenges

+config OPENSBI_BE_SET

+ bool "Set M-Mode to be big-endian in startup code"

+ depends on OPENSBI_BE

diff --git a/firmware/fw_base.S b/firmware/fw_base.S
_start:

+#ifdef CONFIG_OPENSBI_BE_SET

+#if __riscv_xlen == 64

+ 1li s@, MSTATUS_MBE

+ csrs CSR_MSTATUS, s©

+#endif

+#endif

diff --git a/lib/sbi/sbi_hart.c b/lib/sbi/sbi_hart.c
@@ -39,6 +39,10 @@ static void mstatus_init(struct sbi_scratch *scratch)

+#ifdef CONFIG_OPENSBI_BE_SET
+ mstatus_val |= MSTATUS_MBE;

+#endif
Some parts omitted for space/clarity

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

12

https://sif.cdth.io/documentation/sif/latest/factory.html

@ Instruction endian

The instruction stream is always little endian

OpenSBl uses .word for creating instructions the assembler may not support. This stores the
instruction in data endian. This is fixed by changing .word to .insn to mark these as instructions
and to not be endian swapped.

This has the bonus of instructions being marked as instructions!

diff --git a/lib/sbi/sbi_hfence.S b/1lib/sbi/sbi_hfence.S
@@ -32,7 +32,7 @@ __sbi_hfence_gvma_vmid_gpa:
* HFENCE.GVMA a0, a1
* 0110001 01011 01010 000 00000 1110011
w3/
= .word 0x62b50073
+ .insn 0x62b560073
ret

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

@ Build time endian checks

Packages like ucLibc assume little endian RISC-V. This is fixed by using the
pre-defined macro __BYTE_ORDER__ which defines the endian

diff --git a/libc/sysdeps/linux/riscv64/bits/endian.h

+/* extract byte order from gcc predefines */
+#if defined(__BYTE_ORDER__)

+#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
+#define __BYTE_ORDER __BIG_ENDIAN

+#endif

+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
+#define __BYTE_ORDER __LITTLE_ENDIAN

+#endif

+#endif

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

@ Data decomposition

— Often used in optimised or acceleration code

— Modify shifts and masks when accessing fields

— Change struct definitions

For example, in big endian the first byte of the string is at the top of the data

struct tcphdr {

if __BYTE_ORDER == __LITTLE_ENDIAN

uint8_t th_x2:4; /* (unused) */
uint8_t th_off:4; /* data offset */
endif
if __BYTE_ORDER == __BIG_ENDIAN
uint8_t th_off:4; /* data offset */
uint8_t th_x2:4; /* (unused) */

endif

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

15

https://sif.cdth.io/documentation/sif/latest/factory.html

@ Linux Kernel

Some assembly code changed to use simplified/non-accelerated versions

Fixed instruction modification/introspection code
— Static branches

— BUG() macro uses illegal instruction trap

— BPF's BSWAP code needed update

— BPF's JIT correctly emit little endian instructions

— {K,U}probe code modification updates

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

©

COPYRIGHT CODETHINK | LICENSED UNDER CC-BY SA 4.0

17

04

Future

* Problems

The riscv64be-uclibc-gcc will
not build libnptl (segfaults gcc)

The buildroot/musl has issues
possibly with library code

The buildroot/glibc has not
been tested

Kernel kprobes not working

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

Upstreaming

Sent RFC to lists: kernel,
gemu-riscv

Someone already sent zbb rev8
swap patch for Linux kernel

Conference talks to spread
interest

Please get involved

0 VS A8-00 43ANN A3SNIOIT | MNIHLIAOD LHOIMAJOD @

For more information, project source, patch submissions, and

logs can be found on our GitLab. Scan the QR code to access.

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

20

https://sif.cdth.io/documentation/sif/latest/factory.html

Thank You.

Codethink Ltd.

3rd Floor Dale House,
35 Dale Street,
MANCHESTER,
M1 2HF,
United Kingdom

0’7 VS A8-00 43ANN @3SN3DIT | MNIHLIA0D LHOIHADOD @

21

