

From Open Silicon to Sovereign Supercomputing: EuroHPC's Vision for RISC-V

RISC-V Summit Europe

14th May 2025 | **Alexandra Kourfali** | Paris, FR

Who are we?

- EU body & legal and funding entity
- Created in 2018
- Autonomous since Sep. 2020
- Based in Luxembourg
- A team of 47+ employees
- Still growing!

Our Mission

EuroHPC infrastructure

3 PRE-EXASCALE

- Lumi, FI #5 TOP500
- Leonardo, IT #7
- Marenostrum 5, ES #8

5 PETASCALE

- Vega, SL
- Karolina, CZ
- Discoverer, BG
- Meluxina, LU
- Deucalion, PT

Ongoing

2 EXASCALE

- Jupiter, DE #1 Green500
- Alice Recoque, FR

- 8 quantum computers
- 2 quantum simulators

Consortia of 30+ countries

EuroHPC supercomputers

- Al-ready
- Al-upgrades
- Al-optimized

Consortia of 21+ countries
13 EU sites selected

Our Organization

Co-funded by EU, Participating States and Private Members

Our Organization

Co-funded by EU, Participating States and Private Members

Strategic Research & Innovation areas

EuroHPC JU funds an R&I programme to develop a full **European supercomputing ecosystem**, support European **digital autonomy**, to reduce Europe's dependency on **foreign manufacturers**

>> Leadership in Use & Skills

Competence Centres & training programmes in HPC commensurate with the labour market.

>> Applications and Algorithms

Centres of Excellence for HPC Applications & algorithms for EU exascale

>> European Software Stack

SW, algorithms, programming models and tools for exascale & post exascale

>> European Hardware

Ecosystem for low power high-end general purpose processor & accelerator

HPC microprocessor technology: Strategy

EU goal: autonomy in strategic processing technologies

DESIGN

Short term (2025-27)

Medium term (2028-30)

Long term (2030-)

First IPs

- **Build on EPI** efforts
- From test chips to TRL 9
- RISC-V processors and accelerators: chiplets, advanced nodes
- EuroHPC exascale systems as first customer

New RISC-V architectures complement the work of EPI and DARE

- Pilots on RISC-V with stand-alone competitive xPUs
- Collective effort building on **EU R&D** in low power, AI, security,...,
- EuroHPC **post-exascale** system as first customer

Post-exascale RISC-V systems based on EU R&D

- **RISC-V ISA** plays a central role on EU's technology strategy
- Al needs are reforming EU's strategy in processors

EuroHPC Chips Roadmap

HPC microprocessor technology

Eur Joint U

State of play

•EPI: European low-power microprocessor technologies

•DARE: Large-scale European initiative for High Performance Computing ecosystem based on RISC-V

European Processor Initiative at EuroHPC

EPI umbrella and ecosystem

European Processor Initiative at EuroHPC

RISC-V chips development status

EPI

- EPAC 1.5 (2nd gen)
- SDV

EUPILOT

- VEC: Global Foundries 22 nm
- Next GEN:
 - VEC: 59 mm² GF 12nm
 - MLS: 20 mm² TSMC 7nm

eProcessor

- 1 RVOOO core, 1 eAccelerator, 2 L2 slices
- GF 22nm, 10.40 mm²

RISC-V Roadmap

Digital Autonomy with RISC-V in Europe

dare Roadmap for EuroHPC RISC-V

DARE Technical Areas

BSC Coordination

(Roadmap, Technical Coordination, PMO, Diss & Inn)

JSC & BSC Shared Software

IMEC packaging, testing

DARE Technical Areas: Chiplets

DARE Technical Areas: Integration

Storage (NVMe)

Network Topologies

Network Topologies

DARE Technical Areas: SW Stack

- Integrated and optimized SW stack
- Based on existing standards
 - MPI, OpenMP, Fortran, BLAS, SYCL, PyTorch, ...
- Focus on
 - Compilers, especially Fortran
 - Autovectorization and OpenMP
 - Optimized libraries for HPC, AI
 - MPI
- Build on EU strengths in HPC & Al
 - Optimize applications and SW stack for DARE chiplets
- HW/SW co-design
- Contribute to Open-Source SW RISC-V implementations
- Leverage RISC-V SDVs

Conclusions

- RISC-V is inevitable!
 - Inclusiveness in participating in actions from academia and industry
 - Cutting edge technology, chiplets and advanced nodes
- SW stack is crucial
 - One of the most critical parts
- Consolidated effort of projects
 - develop tech diversity
- Clear, ambitious vision & roadmap

The European High Performance Computing Joint Undertaking

LEADING THE WAY IN EUROPEAN SUPERCOMPUTING

THANK YOU

For more information, feel free to visit our website and social media:

