
Ahead of Time Generation for 
GPSA Protection

in RISC-V Embedded Cores

Louis Savary, Simon Rokicki and Steven Derrien



/20

Context

2

Embedded Systems

• Energy constrained

• Everywhere, for every usage

• Remote, mobile
• allows invasive attacks



/20

Context

3

Fault Injection Attacks (FIA)

• Alter transistors state by 
external means
• laser, clock, power, EM

• Can propagate and cause errors:
• Data corruption

• Control flow errors
• Instruction skip/repeat

• Branch faulting

Inria / C. Morel

conditional branch 

basic block
basic block

basic block



/20

Context

4

Countermeasures against Fault Injection

• Techniques for fault detection
• redundancy, signatures

• Multiple implementations
• modifying program

• modifying architecture



/20

• Verifying the Control Flow

• Signature processing

• At compile time
• Each instruction has a signature

• f function: 𝑓 𝑠𝑖𝑔𝑛𝑖 , 𝑖𝑛𝑠𝑡𝑟𝑖+1 = 𝑠𝑖𝑔𝑛𝑖+1
• control flow instructions : patch to correct signature

• Dynamically
• instructions are encoded with f

• verification against reference signature

• patches are used on edges to get target signature

GPSA and CSM

5

Global Path Signature Analysis & Continuous Signature Monitoring

basic block
basic block

basic block

conditional branch 

basic block
basic block

basic block

+ patch

M. Werner et al. “Protecting the Control Flow of Embedded Processors against Fault Attacks”. CARDIS 2016

Requirements (usually)
• (micro)architecture

• dynamic signature computation and comparison
• compiler

• reference signature and patch generation



/20

• GPSA and CSM implementation

• microarchitecture modification to a pipeline
• CSI: ensures pipeline execution integrity

• CCFI: dynamic signature processing

SCI-FI

6

Countermeasure

T. Chamelot, D. Couroussé, and K. Heydeman “SCI-FI , Code, and Control Flow Integrity against Fault Injection Attacks,” in DATE, 2022

SCI-FI

Pipeline

Fetch Decode Execute Memory
Write
Back

CCFI CSI

• compiler modification:
• store in the .data section

• additional instructions 

basic block

basic block
basic block

conditional branch 

basic block
basic block

basic block

load patch



/20

• Only considering faults in the processor logic

• GPSA and CSM implementation
• that ensures Control Flow, Code and Control Signal Integrities 

• Limits :
• requires compiling the application

• indirect jumps (unknown in CFG)

• context switch

SCI-FI

7

Countermeasure

But we want to run any program, without having to recompile it

T. Chamelot, D. Couroussé, and K. Heydeman “SCI-FI , Code, and Control Flow Integrity against Fault Injection Attacks,” in DATE, 2022



/20

• Rely on runtime environment for GPSA generation
• Indirect jumps 

• Context switches

Runtime GPSA generation

8

Another solution



/20

• Dynamic GPSA and CSM generation

1. Branch execution
• signature must exist

• if patch doesn’t exist: interrupt

2. GPSA interrupt execution
• reference for nxtbr

• patch for src

3. Resume execution until next node

Runtime GPSA generation

9

Execution Scheme



/20

GPSA

PS Memory
Signature and Patch

Memory

Runtime GPSA generation

• Avoiding patches and references additional load instructions

• Adding a dedicated memory
• 2-values read port for CCFI

• reserved instructions

• and some operators …

10

Hardware/Software runtime

Pipeline

Fetch Decode Execute Memory
Write
Back

CCFI CSI



/20

• Rely on runtime environment for GPSA generation
• Indirect jumps 

• Context switches

Runtime GPSA generation

11

Another solution

• High performance overhead  

• No Code Integrity

• No reuse from previous executions



/20

Our approach

• Replacing the compiler with 
• a static analysis for GPSA generation 

• and a runtime environment to handle dynamic events

• Indirect jumps 

• Context switches

• Code integrity

12

Hardware/Software runtime



/20

Our approach

13

Ahead-of-Time analysis

Upon installation



/20

CRC

Our approach

14

Ahead-of-Time analysis

PC Line Pointer

0x10120 0x23000

Dynamic Signature



/20

CRC

Our approach

15

Ahead-of-Time analysis

PC Line Pointer

0x10124 0x23000

Dynamic Signature



/20

CRC

Our approach

16

Ahead-of-Time analysis

PC Dynamic Signature Line Pointer

0x10124 0x23010

Used for 
verification

Branch not taken: Offset not 
used, pointer to next line



/20

CRC

Our approach

17

Ahead-of-Time analysis

PC Dynamic Signature Line Pointer

0x10124 0x23030

Used for 
verification

Branch taken: Offset used, 
pointer plus two lines



/20

CRC

Our approach

18

Ahead-of-Time analysis

PC Dynamic Signature Line Pointer

0x10124 0x23030

Missing patch 
and offset: 

GPSA interrupt 
is triggered



/20

Our approach

19

JALR protection



/20

Experimental Study

• implemented on Comet 

• performance overhead :  ≈ ×3,4 (SCI-FI: ×1,25)   (TMR-SW: ≥ ×3)

• area overhead : ≈ ×2 (SCI-FI: ×1,23)   (TMR-HW: ×3)

• But we handle indirect jumps

20

Results

S. Rokicki et al. “What You Simulate Is What You Synthesize: Designing a Processor Core from C++ Specifications”. In: ICCAD 2019. IEEE



/20

Conclusion & Future Works

• GPSA Solution for unmodified binary

• Routine Algorithm variations to tackle edge cases 
• Taking some advance building the CFG

• Simplifying CFG with Fallthrough instead of JAL

• Study the protection of different lengths of signatures 
• 16-bit signatures and patches could reduce area overhead

21


