Automate Fault-Tolerant SoC Generation
with the SOCRATES Platform

Marco Andorno'? Alessandro Caratelli', Benoit Denkinger!, Kostas Kloukinas!, Anvesh Nookala'

1CERN - 1211 Geneva 23 - Switzerland

Abstract

SOCRATES is a SoC generator framework, specifically targeted at fault-tolerant architectures, developed for
high-energy physics experiments, but extensible wherever high reliability is required. It allows to automatically
build full SoCs starting from a collection of RISC-V CPU cores, IP blocks and interconnects. To do that, a
custom build system, called SoCMake, takes care of managing dependencies and invoking the tools to generate

both hardware and software components of the system. A silicon prototype has been designed and taped out to
validate the toolkit and test the performance of the resulting architecture.

Introduction

As the complexity of system-on-chips (SoCs) contin-
ues to increase, ASIC design is becoming more and
more costly and time-consuming, particularly when
considering ultra-deep submicron technology nodes.
To tackle these challenges, heavily relying on IP block
re-use and exploiting the modularity of integrated sys-
tems can greatly help reduce design and verification
turnaround time, offering quicker system prototyping,
a smaller number of reusable ASICs and eventually a
more cost-effective development overall.

This is especially true in the high-energy physics
(HEP) domain, where experiments will continue to
push the limits of data acquisition and processing. Ad-
ditionally, the electronics used for HEP experiments
need to ensure reliable operation even under extremely
high radiation levels. For this reason, ICs designed for
HEP experiments have historically always been rely-
ing on application-specific optimizations and custom
design techniques for fault-tolerance, thus making it
difficult to integrate and re-use third-party IPs.

To address these challenges, this work introduces
SOCRATES (System on Chip RAdiation-Tolerant
EcoSystem), a flexible radiation-tolerant SoC gener-
ator toolkit, that automates the design and verifica-
tion of fault-tolerant RISC-V-based SoCs. Centered
around a hardware/software co-design build system
called SoCMake [1], SOCRATES enables the rapid
assembly of modular SoC architectures, from the hard-
ware description to the firmware stack, integrating
redundancy and error correction for the high reliabil-
ity required in HEP ASICs. By offering a configurable,
reusable, and scalable approach, SOCRATES signifi-
cantly reduces development effort and costs, making it
a suitable solution for a wider range of fault-tolerant

*Corresponding author: marco.andorno@cern.ch

RISC-V Summit Europe, Paris, 12-15th May 2025

applications even beyond HEP.

SOCRATES components

The SOCRATES toolkit is comprised of a collection of
pre-verified IP blocks and build tools for SoCs genera-
tion. The processing core(s), the memory sub-system,
the buses, and the peripherals can be selected freely,
composed, and assembled automatically. The platform
already supports multiple RISC-V cores, including
lowRISC’s Ibex, CHIPS Alliance’s VeeR EL2, Synta-
core’s SCR1, and Yosys’ PicoRV32.

Each peripheral IP block adheres to a common 32-
bit interconnect protocol called APB-RT, a modified
version of the AMBA APB5 standard, where the data
and address buses use Hamming encoding for ECC
and the control lines are triplicated for triple modular
redundancy (TMR) to ensure fault-tolerance. This
common bus makes it easy to add custom peripheral
ensuring compatibility.

The build system requires as input a single common
description of the top-level system and the IP blocks
written in SystemRDL language, to generate hardware
and software components of the final SoC.

The SoCMake build system

At the core of the SOCRATES platform, is SoCMake,
an open-source CMake-based build system that man-
ages the dependencies between hardware IP blocks
and software components, invokes the toolchain for
code cross-compilation for RISC-V and builds the out-
puts for different hardware targets, such as simulation,
FPGA emulation and ASIC implementation (fig. 1).
SoCMake is an API layer on top of CMake which
enables the definition of hardware design build flows
in a similar fashion to how it is commonly done in

mailto:marco.andorno@cern.ch

=“ IP blocks and hardware 7| | SMULATE
—— [accelerators (-9 L | verlaor
. VCS

i —_— i Software
“.cpp

(| IMPLEMENT
_ | i Top level HDL (*.v) * Caden
=8

Register file and
g Interconnections (*.v)

FPGA

L i Hardware abstraction layer

ﬁ Linker scripts generation
UVM testbench (SystemC)
Ing ﬁ and SEE injection utilities
Config files for synthesis and
g ﬁ implementation (*.yaml, *.tcl)
D ion - website
ng (*html, *.md)

Figure 1: SoCMake structure

RDL toolchain

I@II

software projects. SoCMake introduces the Hardware
IP (HWIP) library, defined as a CMake interface li-
brary, which can be anything from peripheral IP blocks,
CPUs, interconnect protocols definitions, up to full
SoCs. Each HWIP incorporates various sources, in-
cluding RTL files, SystemRDL descriptions, C/C—+-+
code, and Markdown documentation. SoCMake then
offers a set of CMake functions to define build targets
for HWIP operations, such as source generation or
modification, dependency management, code compila-
tion, and EDA tool invocation.

To infer the connections between different HWIPs
and build the top-level SoC, SoCMake uses a descrip-
tion in SystemRDL, an Accellera standard register
description language, that, in this context, is used
also as an architectural description. The SystemRDL
files of all the HWIPs are compiled together by an
open-source SystemRDL Compiler' and then used to
generate different components of the SoC with plug-
ins, some available from the PeakRDL? suite, some
custom developed. As an example (non exhaustive
list): PeakRDL-regblock generates synthesizable con-
trol and status register (CSR) blocks in SystemVer-
ilog; PeakRDL-uvm generates a UVM RAL register
model; PeakRDL-socgen generates the top-level Ver-
ilog description of the SoC, by automatically instanti-
ating sub-blocks and inferring the proper interconnect
between them; PeakRDL-halcpp generates the C+-+
Hardware Abstraction Layer (HAL) to streamline pe-
ripheral code writing without adding to the code size.

SoCMake is easily expandable to support custom
tools for, for instance, manipulate the RTL code intro-
ducing fault-tolerance techniques as Triple Modular
Redundancy (TMR). In general, SoCMake aims to be
a lightweight build system easily extendable with any
additional functions or tools that a specific application
may require. SoCMake is available open-source and
any contribution is welcome.

! https://systemrdl-compiler.readthedocs.io
2 https://peakrdl.readthedocs.io/en/latest

Silicon prototype

To validate SOCRATES and its toolset, a radiation-
tolerant microcontroller-like SoC prototype, called
TriglaV, was designed and prototyped in a commer-
cial 28nm CMOS process, (fig. 2). TriglaV features a
triplicated Ibex RISC-V core, protected with TMR at
the flip-flop level, ensuring Single-Event Upset (SEU)
correction within a single clock cycle. The memory
system includes dual-port SRAMs with periodic scrub-
bing and hamming-based error-correcting code tech-
niques (ECC) for high reliability. The processor core
and memory subsystem are interconnected via an OBI-
TMR bus, ensuring end-to-end fault tolerance.

TriglaV integrates a few essential peripherals, includ-
ing a JTAG debug unit, a Platform-Level Interrupt
Controller (PLIC), machine timers, GPIOs, and a
UART module. These peripherals, sourced from open
hardware projects like PULP and OpenTitan, were
modified to ensure compatibility with the SOCRATES
ecosystem. Additionally, in order to be able to test
the performance of the system also under radiation
testing, TriglaV features redundant booting mecha-
nisms (UART, 12C, and JTAG), error counters, and
fast debug outputs providing a hash of critical CPU
signals.

TIMER-O UART
T 1 AL RISC-V Ibex o I
debug
SoC CPU
unit
control PLIC TIMER-1 GPIO

;’;i L] %
OBI TMR crossbar) APB-RT interconnect

e 4@ N \ I-MSPU O Master port
. © Slave port

‘ Bootloader [2esmam |

3
D-MsPU

(2w |

Figure 2: TriglaV architecture

To ensure robustness and reliability, the TriglaV
prototype chip has undergone extensive pre-silicon
validation using formal verification techniques, sim-
ulation campaigns with fault injection, and FPGA-
based emulation. The next phase involves irradiation
experiments with heavy ions and laser beams to as-
sess the fault tolerance capability of the design and
to correlate it with the simulation model, providing
valuable insights into its performance under extreme
conditions. The results from these tests will further
refine the SOCRATES framework and guide future
developments in radiation-hard SoC architectures.

References

[1] Risto Pejasinovié¢ et al. Hardware and software build flow
with SoCMake. 2025. arXiv: 2502 . 02065 [cs.AR]. URL:
https://arxiv.org/abs/25602.02065.

RISC-V Summit Europe, Paris, 12-15th May 2025

https://systemrdl-compiler.readthedocs.io
https://peakrdl.readthedocs.io/en/latest
https://arxiv.org/abs/2502.02065
https://arxiv.org/abs/2502.02065

	Introduction
	SOCRATES components
	The SoCMake build system
	Silicon prototype

