Hassert: Hardware Assertion-Based Agile
Verification Framework with FPGA Acceleration

Ziqing Zhang!'?, Weijie Weng!, Yungang Bao'? and Kan Shil?

1SKLP, Institute of Computing Technology, CAS 2University of Chinese Academy of Sciences

Abstract

Functional verification is typically the bottleneck of the chip development cycle, mainly due to the burdensome

simulation and debugging process using software simulators. For RISC-V, verification becomes even more critical

to support a wide range of applications and extensions. Assertion-Based Verification (ABV) has been widely
adopted to provide better visibility and detect unexpected behaviors. While ABV enhances efficiency but is limited
to slow software simulations. FPGA prototyping offers faster alternatives but lacks fine-grained debugging for
error analysis. To address these challenges, we present Hassert, an efficient ABV framework that combines high-
performance verification on FPGAs with fine-grained debugging in software. Hassert automates the scheduling
and mapping of SystemVerilog Assertions (SVAs) to the FPGA, allowing for extensive hardware testing. To
further improve debugging efficiency, Hassert enables dynamic switching of assertions and pArch-guided snapshot
based on the assertion. We demonstrate that these contributions significantly enhance verification efficiency over
software simulations for various designs, with minimal area overhead and full debugging visibility.

Introduction

Functional verification is a major bottleneck in chip de-
velopment, consuming up to 70% of effort, largely due
to the slow nature of RTL software simulation. While
suitable for early stages, it becomes inefficient for large
benchmarks. FPGA-based testing offers faster perfor-
mance but has limited debugging capabilities. Tools
like ILA can monitor only a few signals, forcing en-
gineers to rerun simulations in software to trace root
causes. Moreover, while ISAs like RISC-V are highly
configurable and adaptable to diverse acceleration sce-
narios, these advantages also create further needs for
more efficient verification methods.

Assertions enhance observability by enabling moni-
toring at any design level and proactively identifying
potential bugs to prevent future issues, saving time
and effort. Unfortunately, assertions are unsynthesiz-
able structures and cannot be directly used in FPGA
prototyping. Additionally, some software simulators
like Verilator do not natively support assertions.

We introduce Hassert, a hardware assertion-based
agile verification framework that can address veri-
fication scenarios for both RISC-V processor cores
and accelerators. Hassert integrates SystemVerilog
Assertions (SVAs) with the DUT on FPGA fabric,
alongside a reference model on CPUs. This enables
efficient DUT testing over large benchmarks with sig-
nificant performance gains compared to software sim-
ulation. Hassert combines automatic self-checking at
the system and pArch levels using the reference model
and assertions. It includes an open-source library
for hardware-equivalent versions of unsynthesizable
SVAs and supports existing SVA implementations. To
further enhance debugging, Hassert leverages FPGA
partial reconfiguration (PR) to support dynamic as-
sertion switching, cutting down the re-compile time

RISC-V Summit Europe, Paris, 12-15th May 2025

Periodic snapshots

VA D
I 1 1 0 =%

Rerun software simulation L
from here Ne=

» Time

(a) Previous approach with hardware snapshots.

pArch-guided snapshots based on assertions
Rerun software simulation
from here

» Time

..’

(b) Proposed verification flow using Hassert.

Figure 1: Comparison between verification flows

and the area overhead. Moreover, Hassert supports
pArch-guided snapshots as in Figure 1(b), avoiding
performance penalties from periodic ways in Figure
1(a). These snapshots can be offloaded to simulators
like ModelSim for deeper analysis.

Hassert is designed for engineers familiar with tra-
ditional verification methods like SW simulation and
FPGA prototyping, enabling agile and efficient verifica-
tion experiences. This paper contributes the following:

e Hassert provides both coarse-grained checking
in system-level and fine-grained checking at the
pArch level with assertion.

e Automatic switching for assertions and hardware
snapshot schemes can further improve efficiency.

e An open-source, synthesizable hardware library
for SystemVerilog Assertions to support different
SVA hardware implementations.

e Demonstrated performance improvements on an
Xilinx UltraScale+ FPGA with realistic workloads
of up to 28941x over software simulation, with
minimal area overhead and no impact on the DUT
timing.

Hassert Transformer

Hassert Connector

Hassert Parser

U

Generate
Connection
Net Table
(CNT)

FPGA

RTL parser|
ng)|

Backend
Place

=> i
ASTs

Assertion ASTs (JSON)

Generate
Assertion
RTL

Route

Assertion ||
RTLs.

The Hassert C

Netlist
writer —
| from
FPGA
vendor [P}
¢:
H

FPGA Bitsts
2ynq UltraScale+ FPGA tstream,

Design RTLs| ||

Software Backend on Host CPU

Interrupt

Controller

I:l Existing work
I:l From FPGA or EDA

vendors

I:l Newly designed

software module
Newly designed
hardware module

Software Simulator
e.g. Modelsim

Construct Sim State
including assertions
Sim Model Mem Data
Ext Devices [| DUT & Ref

Reference
Model
(optional)

Snapshot Controller

Hassert FPGA Verification Platform

Figure 2: Hassert Framework. Blue and green boxes are new modules and tools; yellow bozxes are from vendors.

The Hassert Framework

As a co-design framework for agile ABV, as shown in
Figure 2, Hassert’s key features include the following:

Moulti-level self-checking. Hassert combines the
self-checking mechanism in different design hierarchies,
including the system-level and pArch-level. We ex-
pand ENCORE to perform coarse-grained differential
checking of the key signals from both the DUT and
the reference model. Through assertions, Hassert in-
troduces additional observability by checking internal
signals automatically.

Microarchitecture-guided hardware snapshots.
Hassert enables debugging with a snapshot mechanism
to transfer FPGA status to the simulator for error
replay by utilizing the FPGA readback feature. Fur-
thermore, Hassert can make a more precise snapshot
that is closer to the root cause based on pArch sta-
tus that is monitored by assertions, which are named
assertion coverage. We define our coverage based on
the assertion structure, checking if a sub-expression in
assertion is triggered. When an assertion is fired or
the coverage meets certain conditions, a snapshot will
be created and debugging can be performed with the
same fidelity as a software run to the same point.

Hassert compiler. To further facilitate ABV on
FPGAs, Hassert compiles unsynthesizable assertion
language such as SVA into synthesizable hardware
with equivalent functionality. Our toolchain, Hassert
compiler has three primary tools: 1) hassert parser:
Parses the original design to generate abstract syntax
trees (ASTs) for all SVAs. 2) hassert_transformer:
Using ASTs, this tool identifies atomic units and their
connection topology in each assertion. Operators in
the synthesizable SVA library then replace these units.
3)hassert_ connector: Generates and connects netlists
from DUT and SVA circuits to create the final design.
This is sent to generate bitstreams. We also imple-
ment a library of the hardware SVA operators with
what we believe to be the widest range of hardware-
implemented SVA operators to date.

Dynamic switching of assertions. Vendor-
provided debugging tools require re-compiling an entire

30000
W Trace none M Trace partial wave

‘
N
N D
e &
S

25000

20000

15000
10000
0

&

Acceleration Ratio

«
=}
S
S}

Q o o &
« & SRS S S S :
L P . S N R S N S
N I S
O Y N N O & O oS
< o &L < & & S & ©
& & & & & SN
& ¢ & &L RIS <&

Figure 3: Comparison against ModelSim simulations.

FPGA design to test new signals; Hassert avoids this
using the PR capabilities of modern FPGAs. The
FPGA is divided into static regions for the DUT and
dynamic regions for assertions, Thus Hassert can dy-
namically swap assertions without recompiling.

Experimental Results

We implement and evaluate Hassert on the Fidus
Sidewinder board, using two case studies from open-
source projects: 1) a 64-bit RISC-V processor core,
and 2) hardware accelerator designs from macsuite,
which can be integrated with RISC-V processors.

Performance evaluation. For these practical
accelerator designs in case study 1, the geo. mean of
the acceleration ratio achieved by Hassert is 2932.9x
at 100MHz and 12986x at the maximum frequency.
For case study 2, we again implement the DUT on the
FPGA at 100MHz and test over realistic workloads and
benchmarks. The comparison results are demonstrated
in Figure 3, where two different debugging options are
enabled in ModelSim. Hassert achieves an acceleration
ratio of 13242x ~ 22589x and 17154 x ~ 28941 X over
ModelSim in these situations respectively, with average
speedups of 17858 x and 22508 .

Efficiency and Overhead Analysis. We evalu-
ate the area overhead of Hassert regarding the resource
usage on FPGA. We compare our result Xilinx ILA for
the same set of signals. Hassert only added 0.55% of
LUTs, 0.55% of Registers, and 1.22% of BRAM com-
pared to the FPGA total resource, while ILA added
notable BRAM usages to trace signals.

RISC-V Summit Europe, Paris, 12-15th May 2025

	Introduction
	The Hassert Framework
	Experimental Results

