
Background

Ziqing Zhang1,2, Weijie Weng3∗, Yaning Li4∗, Lijia Cai5∗, Haoyu Wang 6∗, David Boland7, Yungang Bao1,2 Kan Shi1,2

Hassert: Hardware Assertion-Based Agile Verification
Framework with FPGA Acceleration

With the growing complexity of hardware designs, functional verification has become

the bottleneck throughout the entire chip development cycle. Existing platforms face

the dilemma of verification efficiency and effectiveness.

• Software RTL Simulation
• Pros: high visibility with many practical verification tools and methods.

• Cons: extremely slow speed, for large design < 10kHz.

• FPGA Prototyping
• Pros: enable thorough verification with the fastest simulation speed.

• Cons: debugging disaster, lack of debugging capability, and error-checking
mechanism.

Hassert Compiler
The Hassert Compiler facilitates the automatic translation of SVAs
to their corresponding digital circuits with the same functionality. It
comprises three primary tools.

• Hassert Parser: Gather the AST from the input design files.
• Hassert Transformer: Map the SVA to RTL with the operator in

the Hassert Operator Library.
• Hassert Connector: Connect all the assertions with design at

the netlist level.

Figure 2: The ENCORE Framework where PL and PS represent the
programming logic and processing system on the FPGA, respectively. 5

Functional Verification with Hassert

Hassert Overview

Debugging with Hassert

The simulation-based functional verification employs the design on a specific

verification platform, and then simulates it for error checking and fault localization.
Hassert improves verification in both aspects:
• Multilevel effective self-checking

• Coarse-grained: Check against a system-

level reference model.
• Fine-grained: Check with Assertions(SVAs).

• Agile fault localization with the snapshot
• Hassert can automatically snapshot the

The design states when necessary.
• Identify the bugs by replaying the progress from the closest snapshot.

Microarchitecture-guided snapshot
• Periodic Snapshot: Perform the snapshot periodically, and locate

the bug by replaying from the closest snapshot.

• 𝞵Arch Guided snapshot: Based on the assertion coverage
information, only trigger snapshot when necessary.

Evaluation

Assertion Coverage
• Assertion in Hassert serves as a probe in ROI (region of interest), monitoring the 𝞵Arch state.
• Coverage in Hassert consists of a hit counter and a sub-expression toggle monitor.

Figure 2：Hassert Framework. Blue and green boxes are new modules and
tools; yellow boxes are from FPGA/EDA vendors.

Figure 6：Different debugging approaches reproducing a known bug.
(Shaded parts: time for snapshot; solid parts: SW simulation time.)

Figure 3：Comparison between different snapshot strategies

Figure 5：Comparison against ModelSim simulations with different
debugging options. (Trace none: disable the wave dump, Trace partial:

only dump the signal monitored by assertion)

Table 1：Resource Usages Comparison

Platform:
FPGA: Fidus Sidewinder board
• with ZYNQ UltraScale+ XCZU19EG FPGA Chip and

two 16GB DDR memory
Server: Dual AMD Ryzen 5950x 16 cores Processor

Configuration:
• System Clock Frequency: 100MHz.

• ISA Emulator: NEMU
• DUT: Nutshell
*：Weijie Weng, Yaning Li, Lijia Cai and Haoyu Wang finish this work during

internship at the SKLP, Institute of Computing Technology, CAS

Hassert Operator Library
Hassert provides multiple operators' semantic equivalence
implementation for functional verification.

• Sample Function, e.g., $past

• Sequence Operator, e.g., and, or

• Delay & Repetition, e.g., [*n], ##

• Property operator, e.g., |=>,|->

： zhangziqing23z@ict.ac.cn , shikan@ict.ac.cn

1 SKLP, Institute of Computing Technology, CAS 2 University of Chinese Academy of Sciences 3 Xiamen University of Technology 4 University College Dublin
5 Hong Kong University of Science and Technology 6 Zhejiang University 7 The University of Sydney

Hassert for Fault Localization

Root cause

Assertion failed

Ref model
check failed

System stuck
I/O error

etc.

Verification progress

Dynamic Switching of Assertion
• Hassert supports dynamic switching by utilizing partial

reconfiguration.

• Hassert will schedule the assertions based on the Assertion

Coverage and Aera overhead of assertions.

Figure 1：Multilevel effective self-checking

Figure 4：The debugging workflow with Hassert

① Assertion detects a violation and a fail flag issue,

initiating a snapshot.

② The simulator replays the simulation with the snapshot

③ Assertion metadata is passed to the software driver to

look up the exact assertion triggered.
④ Identify thebug according to the assertions.

