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Background Functional Verification with Hassert

With the growing complexity of hardware designs, functional verification has become The simulation-based functional verification employs the design on a specific
the bottleneck throughout the entire chip development cycle. Existing platforms face verification platform, and then simulates it for error checking and fault localization.
the dilemma of verification efficiency and effectiveness. Hassert improves verification in both aspects: Root cause Verification progress
« Software RTL Simulation + Multilevel effective self-checking ®
« Pros: high visibility with many practical verification tools and methods. + Coarse-grained: Check against a system-
. ! level reference model. Assertion failed
« Cons: extremely slow speed, for large design < 10kHz. . . ) ] HASSERT
FPGA Prototypin « Fine-grained: Check with Assertions(SVAs). hRefk "‘fod~e11 .
. checl alle
yping « Agile fault localization with the snapshot CQENCORE Yster stuck
« Pros: enable thorough verification with the fastest simulation speed. + Hassert can automatically snapshot the 1 Oefc"‘""”
+ Cons: debugging disaster, lack of debugging capability, and error-checking The design states when necessary. Figure 1 Multilevel effective self-checking
mechanism. « Identify the bugs by replaying the progress from the closest snapshot.
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« Hassert Parser: Gather the AST from the input design files. Assertion ASTs (JSON) RTL RTLs sl
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+ Sample Function, e.g., $past « Delay & Repetition, e.g., [*n], ## Figure 2 : Hassert Framework. Blue and green boxes are new modules and
* Sequence Operator, e.g., and, or + Property operator, e.g., |=>, |-> tools; yeflow boxes are from FPGA/EDA vendors.

Hassert for Fault Localization Debugging with Hassert
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* Assertion in Hassert serves as a probe in ROI (region of interest), monitoring the pArch state. Ezertion -5

« Coverage in Hassert consists of a hit counter and a sub-expression toggle monitor.
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Dynamic Switching of Assertion
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* Hassert supports dynamic switching by utilizing partial 7t t X : : Root Cause
X I I I I & val delegS = (deleg(causeNO(3,0)))
reconfiguration. Time Iy
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* Hassert will schedule the assertions based on the Assertion from here Saae? [va1 deregs-(dereg(causeno(3,0))) & (privitedgetodecroden)
Coverage and Aera overhead of assertions. Figure 4. The debugging workflow with Hassert
. . . uArch-guided snapshots based on assertions @ Assertion detects a violation and a fail flag issue,
Microarchitecture-guided snapshot 7 A X o
I I I & initiating a snapshot.
* Periodic Snapshot: Perform the snapshot periodically, and locate Reram software smulation 5y Time @ The simulator replays the simulation with the snapshot
i h ~- . . .
the bug by replaying from the closest snapshot. from here @ Assertion metadata is passed to the software driver to

+ pArch Guided snapshot: Based on the assertion coverage Figure 3: Comparison between different snapshot strategies look up the exact assertion triggered.
information, only trigger snapshot when necessary. @ Identify the bug according to the assertions.
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Figure 6 Different debugging approaches reproducing a known bug.
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