Hassert: Hardware Assertion-Based Agile Verification FOHIHA TR LA
Framework with FPGA Acceleration R

. e L ot | | & Tanemxy
Ziging Zhang'2, Weijie Weng?+, Yaning Li4*, Lijia Cai®*, Haoyu Wang ¢+, David Boland?, Yungang Bao'2 Kan Shi'2 -

University of Chinese Academy of Sciences

1 SKLP, Institute of Computing Technology, CAS 2 University of Chinese Academy of Sciences 3 Xiamen University of Technology 4 University College Dublin
5Hong Kong University of Science and Technology € Zhejiang University 7 The University of Sydney

© : zhangziging23z@ict.ac.cn, shikan@ict.ac.cn

Background Functional Verification with Hassert

With the growing complexity of hardware designs, functional verification has become The simulation-based functional verification employs the design on a specific
the bottleneck throughout the entire chip development cycle. Existing platforms face verification platform, and then simulates it for error checking and fault localization.
the dilemma of verification efficiency and effectiveness. Hassert improves verification in both aspects: Root cause Verification progress
« Software RTL Simulation + Multilevel effective self-checking ®
« Pros: high visibility with many practical verification tools and methods. + Coarse-grained: Check against a system-
. ! level reference model. Assertion failed
« Cons: extremely slow speed, for large design < 10kHz. . .)] HASSERT
FPGA Prototypin « Fine-grained: Check with Assertions(SVAs). hRefk "‘fod~e11 .
. checl alle
yping « Agile fault localization with the snapshot CQENCORE Yster stuck
« Pros: enable thorough verification with the fastest simulation speed. + Hassert can automatically snapshot the 1 Oefc"‘""”
+ Cons: debugging disaster, lack of debugging capability, and error-checking The design states when necessary. Figure 1 Multilevel effective self-checking
mechanism. « Identify the bugs by replaying the progress from the closest snapshot.
Hassert Overview
Hassert Compiler Hassert Transformer Hassert Connector

Hassert Parser

The Hassert Compiler facilitates the automatic translation of SVAs { Comeeion comecion [cometion
Net Table

info)

FPGA
Backend

Connect
Netists |1 P';“

1 Netlist

gsesn:nm Assertion || [=—| \:rr‘;t:\r
« Hassert Parser: Gather the AST from the input design files. Assertion ASTs (JSON) RTL RTLs sl
« Hassert Transformer: Map the SVA to RTL with the operator in The Hassert Compill 'mﬁm

i L A T — | i
the Hassert Operator Library. -E — A’n syna Ultrascoler o PONBEn]
+ Hassert Connector: Connect all the assertions with design at — Hardware Library || Hardware 1Ps L

the netlist level.

. . . - N . . =} Topology
to their corresponding digital circuits with the same functionality. It N o BN ||: Lf[o [i
Jang)[C=] Assertion e
comprises three primary tools. ez ASTs o

Route

Software Backend on Host CPU

Hassert Operator lerary D Newly designed |:| Existing work Construct Sim State
software module S including assertions

DUT Interrupt
Controller

Region

Reference
=

Snapshot Controller

Hassert provides multiple operators' semantic equivalence) g ModelSi)
e o ‘ [oo, D0 o™ || "™ | [yt | [renos .
implementation for functional verification. Ext Devices | | DUT & Ref
Hassert FPGA Veril ion Platform

+ Sample Function, e.g., $past « Delay & Repetition, e.g., [*n], ## Figure 2 : Hassert Framework. Blue and green boxes are new modules and
* Sequence Operator, e.g., and, or + Property operator, e.g., |=>, |-> tools; yeflow boxes are from FPGA/EDA vendors.

Hassert for Fault Localization Debugging with Hassert
A ion Ver: Monitored - @

ssertion Coverage RIS | snapshor

assertion fail

* Assertion in Hassert serves as a probe in ROI (region of interest), monitoring the pArch state. Ezertion -5

« Coverage in Hassert consists of a hit counter and a sub-expression toggle monitor.

.| Assertion sva

Dynamic Switching of Assertion

Periodic snapshots PR——— Fimri |
* Hassert supports dynamic switching by utilizing partial 7t t X : : Root Cause
X I I I I & val delegS = (deleg(causeNO(3,0)))
reconfiguration. Time Iy
N .) Rerun software simulation P Correct Code
* Hassert will schedule the assertions based on the Assertion from here Saae? [va1 deregs-(dereg(causeno(3,0))) & (privitedgetodecroden)
Coverage and Aera overhead of assertions. Figure 4. The debugging workflow with Hassert
. . . uArch-guided snapshots based on assertions @ Assertion detects a violation and a fail flag issue,
Microarchitecture-guided snapshot 7 A X o
I I I & initiating a snapshot.
* Periodic Snapshot: Perform the snapshot periodically, and locate Reram software smulation 5y Time @ The simulator replays the simulation with the snapshot
i h ~- . . .
the bug by replaying from the closest snapshot. from here @ Assertion metadata is passed to the software driver to

+ pArch Guided snapshot: Based on the assertion coverage Figure 3: Comparison between different snapshot strategies look up the exact assertion triggered.
information, only trigger snapshot when necessary. @ Identify the bug according to the assertions.

Resource [Fassert (ENCORE | A mA
- 30000
Platform: mTrace none M Trace partial wave i [(configl) _(config?)
. X . 25000 LUTs 2820 1597 | 2266 3749
FPGA: Fidus Sidewinder board 2 lossn | 031 | ©4asn) ©72%)
S 20000 Block RAMs | 12 2 | 8 512
i H s (1.22%) | (1.22%) | (0.81%) (52.03%)
* with ZYNQ UltraScale+ XCZU19EG FPGA Chip and £ ;5 TTEE S e
two 16GB DDR b l0.23%) J (0.14%) k(0.37%) (0.41%)
mem 3 10000
© emory < Table 1: Resource Usages Comparison
Server: Dual AMD Ryzen 5950x 16 cores Processor P
0 = ENCORE ssert] wHassert2
= AN © R & ®
Configuration: F Ay oW Simdston
s SRS g
« System Clock Frequency: 100MHz. & ¢ e
* ISA Emulator: NEMU Figure 5. Comparison against ModelSim simulations with different
] debugging options. (Trace none: disable the wave dump, Trace partial:
* DUT: Nutshell only dump the signal monitored by assertion) Snapshot Period (Cycles

Figure 6 Different debugging approaches reproducing a known bug.
(Shaded parts: time for snapshot; solid parts: SW simulation time.)

