
RISC-V Summit Europe, Paris, 12-15th May 2025 1

Secure Domain-Specific Debugging on an MCU

Alvin Che-Chia Chang and Paul Shan-Chyun Ku

Andes Technology Corporation

Abstract

A modern embedded system involves multiple developers with varying security requirements, often leading to

trust issues and the need for isolated proprietary assets. A secure monitor addresses this by providing multiple

logically isolated execution environments (EEs), each maintaining its own state, ensuring invisibility between

EEs. Traditional debugging mechanisms in RISC-V allow unrestricted access, compromising security by

bypassing runtime isolation measures. Existing secure debugging methods authenticate debuggers but grant

full access upon successful authentication, undermining the intended isolation. This talk presents a domain-

specific debugging approach that restricts debugger access to predefined assets based on authentication,

maintaining security and isolation during debugging. The solution is implemented into our secure monitor

without using the RISC-V Debug Module, resulting in a low-cost, highly secure, and flexible debugging

environment.

Introduction

A modern embedded system usually goes through a series

of developers, from IP providers, SoC integrators, chip

vendors, and firmware developers to OEMs and ODMs.

When multiple entities and developers collaborate on a

single system, often with differing security requirements,

they may not trust one another and need their proprietary

security domains. Thus, it’s essential to isolate their private

assets and system resources during run time as well as

debug time. In a secure system, the job falls on the shoulder

of its secure monitor. It shall provide multiple logically

isolated execution environments (EE), each with its own

state, including memory sections with specific permission,

an interrupt handler, and a register file. The state of an EE

should be deemed invisible to another EE except

specifically expressed. It is held not only for run time but

debug time. This talk will focus on building such secure

debugging.

Developers often require debugging capabilities to

identify and resolve system issues when developing domain

applications. However, due to the unrestricted nature of

RISC-V debug mechanisms, one can access anything

without limitation via a debugger. The legacy secure

debugging asks for authentication to control the debugger.

As a result, the one getting authentication can access

everything. It breaks the isolation people build for run time.

Thus, domain-specific debugging becomes crucial, which

means a system can define debuggable assets according to

different authentications.

This presentation will demonstrate a secure domain-

specific debugging solution, which not only provides

comprehensive debugging capabilities but also addresses

the aforementioned supply chain vulnerabilities that can

compromise system security during debugging. We

implemented such a secure monitor without using the

RISC-V Debug Module and delivered a low-cost, highly

secure, and highly flexible debugger.

The Secure Monitor

We will present secure domain-specific debugging by

demonstrating our RISC-V base secure monitor designed to

secure multiple domains in an MCU-class processor. The

secure monitor runs in M-mode and manages security

domains for trusted and untrusted applications in U-mode.

It ensures application isolation using RISC-V security

primitives, including PMP/Smepmp [2] and IOPMP [3].

Secure Domain-specific Authentication

To ensure the integrity between developers at every stage,

the secure monitor incorporates asymmetric digital

signatures to verify each security domain. Each security

domain can be signed by its keypair, which belongs to the

corresponding developer. Each security domain must be

verified before being executed. Besides, the secure monitor

will check the conflict and irritation of resource allocation.

During run time, it can also deal with the resource sharing

between domains in stack and dynamic ways. The sharing

mechanism emulates the CHERI-style compartment [4] by

using PMP/Smepmp to ensure every memory block being

shared without creating unexpected access rights. To sum

up, the secure monitor enforces domains’ isolation and

provides a certain level of flexibility to avoid copying data

by a carefully designed sharing mechanism.

RISC-V Debug

Debugging is a crucial step in system development,

enabling developers to identify and resolve issues, optimize

performance, and ensure system robustness. The RISC-V

standard defines two primary debugging scenarios: native

debug (also known as self-hosted debug) and external

debug. Native debug relies on debug software running on

2 RISC-V Summit Europe, Paris, 12-15th May 2025

the RISC-V platform to debug other components within the

same platform, whereas external debug depends on a

hardware-based debug module. In general, the native debug

software operates in a higher privilege mode (e.g., OS or

secure monitor) to access lower-privileged modes for

debugging. The Sdtrig (Trigger Module, TM) ISA

extension, defined in the RISC-V debug specification,

facilitates native debug operations. To communicate with

the host debugger, the native debug software receives and

executes debugging commands to debug the system,

utilizing the TM CSRs to perform operations such as

inserting hardware breakpoints and instruction stepping.

Methodologies

Secure Domain-Specific Debugging

The secure monitor provides secure domain-specific

debugging by leveraging the RISC-V native debug

mechanism. It doesn’t need the RISC-V Debug Module

(DM), which can access every corner without limitation.

Instead, a dedicated channel is integrated to facilitate

communication between the host debugger and the target

system. The channel can be as simple as a UART and

should only be manipulated by the secure monitor (M-

mode). PMP/Smepmp plus IOPMP can ensure the

requirement.

Challenge-Response Authorization

The secure monitor authenticates and identifies the host

debugger through a challenge-response authentication

protocol. When a debugger connection is required from the

host side, it generates challenging random data and sends it

back to the debugger. Then, according to the keypairs and

the challenging data, the debugger sends responding data to

the secure monitor.

By leveraging the authentication keys of each security

domain, the secure monitor verifies the response data to

pick up debuggable EEs.

Debug Operations

Upon successful authorization, the secure monitor begins

receiving and executing debugging commands from the

host debugger. It processes incoming debug commands to

facilitate debugging within the targeted security domain.

The Trigger Module (TM) registers are managed by the

secure monitor to perform targeted debug operations such

as inserting hardware breakpoints or instruction stepping.

Some operations involve memory addresses and sizes, i.e.,

memory regions. For instance, the host debugger may

request reading or writing specific memory contents or

insert a breakpoint at a particular instruction address. To

ensure domain isolation, the secure monitor scrutinizes

every debug operation involving memory regions, verifying

that the host debugger only accesses permitted memory

regions. By doing so, the secure monitor restricts the host

debugger’s access to authorized assets within the protection

boundary of the host debugger’s security domains.

PMP, Smepmp, IOPMP

Notably, Smepmp is designed to prevent higher-

privileged software from accessing or executing memory

regions of less-privileged modes, thereby preventing

unintended accesses. However, debug operations require

the secure monitor to temporarily access memory content

within the security domains, posing a challenge to Smepmp.

To mitigate this issue, the secure monitor reserves high-

priority PMP entries, and configures the entries that cover

targeted memory regions temporarily for debugging,

ensuring seamless debug operations while maintaining

security.

When debugging memory addresses that target Memory-

mapped I/O (MMIO), the debug operations may manipulate

peripherals like the Direct Memory Access (DMA)

controller and request DMA to access system memory.

However, PMP and Smepmp, which provide standard

protection schemes for RISC-V hart accesses to physical

address space, do not safeguard against unauthorized

accesses from non-hart initiators such as DMA controllers.

This creates a vulnerability where a host debugger can

initiate debug operations that manipulate the DMA

controller to access out-of-bounds memory regions. To

mitigate this risk, IOPMP is integrated into the system. As

a hardware component, IOPMP safeguards data by denying

unauthorized accesses from I/O agents, much like PMP and

Smepmp restrict RISC-V hart accesses. Adopting IOPMP

can ensure that memory regions accessible by non-hart

initiators are restricted. Even when a host debugger initiates

debug operations to start DMA transactions, IOPMP

restricts these transactions to accessing only memory

regions within the debugger’s security domains.

Remarks

We introduced our secure monitor, which not only

constructs multiple EEs in run time but in debug time. It

uses as few hardware components as possible to achieve

the ability to optimize the cost, and by its software nature,

the debug ability can be removed or enhanced via a

firmware upgrade. It further improves security after the

deployment.

References

[1] “RISC-V Debug Specification v1.0.0-rc4”,

github.com/riscv/riscv-debug-spec.

[2] “The RISC-V Instruction Set Manual Vol. II:

Privileged Architecture”, github.com/riscv/riscv-isa-manual.

[3] “RISC-V IOPMP Specification v0.9.2-rc3”,

github.com/riscv-non-isa/iopmp-spec.

[4] “RISC-V Specification for CHERI Extensions v0.9.3-

prerelease”, github.com/riscv/riscv-cheri.

