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Abstract

This paper presents a robust lockstep verification framework for the NaxRiscv System-on-Chip (SoC) —a 
flexible, open-source, out-of-order, and superscalar RISC-V core. Our methodology integrates cycle-accurate 
RTL simulation using Verilator, functional co-simulation with the Spike golden model, and constrained-random 
test  generation  via  RISCV-DV to  achieve  a  comprehensive  verification  framework. Functional  coverage 
metrics are collected through a Questa/UVM-based verification environment, enabling early detection of subtle 
behavioral mismatches and corner-case failures. Our methodology rigorously validates ISA compliance but 
also significantly enhancing the overall verification process.

Introduction

Processor  verification  remains  one  of  the  most 
challenging phases in modern hardware design, especially 
given  the  growing  complexity  of  contemporary 
architectures.  To  ensure  robust  performance,  advanced 
verification techniques and specialized tools are employed 
to rigorously test designs and uncover hidden bugs. In our 
framework for verifying RISC-V architectures, randomized 
execution  scenarios  are  generated  and  detailed  Register-
Transfer Level (RTL) simulation outputs are meticulously 
compared against those from a trusted reference model.

  Our approach is built around a lockstep co-simulation 
technique,  where  the  Design  Under  Test  (DUT)  and  a 
golden  Instruction  Set  Simulator  (ISS)  perform identical 
operations  in  parallel,  enabling  real-time  discrepancy 
detection and efficient  debugging.  This  methodology has 
been applied to NaxRiscv [1]—a highly configurable, out-
of-order,  and  superscalar  core  supporting  multiple  ISA 
extensions  (including  RV32/64IMAFDC),  it  supports 
operating systems like Linux and FreeRTOS and facilitates 
rapid  on-FPGA  prototyping  when  integrated  with  the 
LiTeX [2] framework. Developed using SpinalHDL [3]—
modern  hardware  design  language  uses  the  Scala  Build 
Tool (SBT) to build the project and simulate the execution 
of the core. Moreover, 

Multi-level verification strategy

The  verification  methodology  is  structured  as  a  multi-
layered approach that combines directed testing, real-world 
benchmarking, and constrained-random testing to ensure a 
comprehensive  evaluation  of  both  architectural  and 
microarchitectural  aspects  of  the  design.  The  process 
begins with an automated Jenkins Continuous Integration 
(CI) pipeline that executes standard compliance test suites
—specifically, riscv-tests and riscv-arch-tests—which serve 
as established benchmarks for verifying that the Instruction 

Set  Architecture (ISA) and its  extensions conform to the 
specifications. These industry-recognized suites provide an 
essential  baseline  by  checking  both  basic  ISA  and 
microarchitectural conformance.

 
Figure 1 : Multi-level verification strategy

Following  these  directed  tests,  the  methodology 
incorporates  the  execution  of  real-world  benchmarks  to 
assess  performance  and  software–hardware  integration. 
This phase involves running applications and performance1 
metrics  such  as  CoreMark  and  Dhrystone,  as  well  as 
executing operating system boot  sequences ranging from 
FreeRTOS to the Linux boot stage.

To  further  stress  the  design  and  explore  its  functional 
boundaries,  the strategy leverages RISCV-DV [4],  a  tool 
that automatically generates constrained-random assembly 
programs. These tests deliberately target edge cases—such 
as misaligned instructions, register dependencies (RD/RS), 
pipeline hazards, memory access violations, and unhandled 
interrupts—thereby  probing  complex  execution  paths.  In 
parallel,  a  robust  functional  coverage  model,  based  on 
Universal Verification Methodology (UVM) and embedded 
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within RISCV-DV, ensures exhaustive validation of all ISA 
features, covering various opcodes, extensions (such as F, 
D, and C), and the proper interactions with system registers 
(CSRs).  This  integrated  approach  guarantees  that  every 
aspect  of  the  design  is  rigorously  validated,  from  basic 
compliance to resilience under real-world conditions. 

Lockstep Verification Workflow

Figure 2 : Lockstep RTL & ISS Verification Platform

We  present  a  comprehensive  lockstep  verification 
framework that integrates several advanced tools to ensure 
both  functional  and  architectural  compliance  for  the 
NaxRiscv SoC. At its  core,  RISCV-DV—a robust,  open-
source  framework  developed  by  Google,  coded  in 
SystemVerilog/UVM,  this  generator  of  randomized 
instruction sequences and exhaustive test programs for the 
RV32/64IMAFDC  ISAs  across  multiple  privilege  modes 
(M, S, and U), deliberately targeting critical edge cases to 
maximize functional coverage.

These  test  programs  are  executed  in  SocSim,  a  Scala-
based multi-core SoC simulator that leverages Verilator for 
cycle-accurate RTL simulation and golden Instruction Set 
Simulator (ISS). The RTL simulation environment provides 
precise  clock-cycle  modeling  and  deep  visibility  into 
internal signals (such as the program counter, Control and 
Status  Registers  (CSRs),  and memory transactions),  with 
detailed Value Change Dump (VCD) outputs available for 
further  analysis.  The  simulator’s  outputs  are  rigorously 
compared  against  the  functional  emulation  provided  by 
Spike—an  open-source  ISS  that  serves  as  our  golden 
reference by accurately managing CSR operations, general 
and  floating-point  registers,  and  critical  extensions  like 
Compressed, Atomics, and the Floating-Point Unit

To  achieve  real-time  trace  alignment,  SocSim 
incorporates  the  RISC-V Lock-Step (RVLS) framework 
via  a  Java  Native  Interface  (JNI).  This  integration 
meticulously  synchronizes  instruction  execution  and 
asynchronous events (e.g., interrupts and exceptions) on a 
cycle-by-cycle  basis  by  comparing  the  DUT’s  state  with 
that of Spike (Step & Compare). In parallel, comprehensive 
coverage metrics—including instruction, CSR, and branch 
—are  extracted  from  the  execution  traces.  The  DUT’s 
tracer.log and Spike’s spike.log are first converted to CSV 
format; then, using the Questa RTL simulator, the coverage 
data is collected into a binary Unified Coverage Database 

(UCDB) file and finally transformed into a human-readable 
report  via  the  “vcover  report”  command.  This  detailed 
coverage  analysis  provides  metrics  for  each  instruction 
along with various coverpoints such as operand registers, 
branch outcomes, and memory alignment, ensuring that the 
verification process remains both exhaustive and precise

A Jenkins-based CI pipeline automates regression testing 
and  dynamically  scales  RISCV-DV test  generation  until 
predefined  coverage  targets  are  met,  providing  rapid 
feedback  on  design  modifications.  By  seamlessly 
integrating  RISCV-DV’s  comprehensive  test  generation, 
RVLS’s rigorous lockstep enforcement, and Questa/UVM’s 
detailed  coverage  analysis,  our  framework  effectively 
eliminates  blind  spots,  guarantees  strict  ISA compliance, 
and facilitates early bug detection—ultimately reinforcing 
the reliability of our NaxRiscv SoC implementations.

Results Overview

Our experimental results clearly demonstrate that our 
SoC-level  integrated lockstep verification framework can 
detect  critical  issues  that  conventional  core-level 
simulations  fail  to  detect.  Initially,  discrepancies  in  the 
IO/memory  mapping  triggered  ˝trap_store_access_fault˝ 
events.  In  another  instance,  a  misaligned  instruction 
generated by RISCV-DV resulted in a malformed opcode, 
introduce a mismatch between DUT and the ISS due to a 
lack  of  verification  of  the  Rd/Rs  registers  of  certain 
compressed  instructions  (e.g.,  C.LWSP)  in  the  DUT 
causing  a  ˝trap_load_page_fault˝  events.  Additionally, 
mismatches in the CSR configurations between the DUT 
and the golden reference Spike, led to observable execution 
anomalies  (e.g.,  DUT  missed  a  trap).  These  findings 
confirm  that  real-time  cycle-by-cycle  comparison  and 
random generation of instruction sequences is essential to 
uncover  subtle  design  issues,  thereby  enhancing  overall 
processor reliability.

Conclusion

This work presents a robust locking verification framework 
that  bridges  the  critical  gap  between  architectural 
specifications  and  real-world  operational  integrity  in  the 
NaxRiscv  SoC.  By  integrating  cycle-accurate  simulation 
(via  Verilator),  functional  co-simulation  (using  Spike), 
RISCV-DV-driven constrained random test generation, and 
Questa/UVM-powered  coverage  analysis—all 
synchronized through RVLS’s real-time trace alignment—
the framework significantly enhances verification efficacy. 
This cohesive approach not only ensures strict architectural 
compliance  but  also  enables  early  detection  of  even  the 
most  elusive  corner-case  bugs,  including  memory  access 
integrity,  interrupt  handling,  and  exception  management. 
With  its  rigorous  and  scalable  methodology,  this 
framework strengthens confidence in the SoC’s functional 
correctness  and  resilience  across  diverse  operational 
scenarios.
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