
Comprehensive Lockstep Verification for NaxRiscv SoC
integrating RISCV-DV, RVLS, and Questa/UVM

Billal Ighilahriz and Olivier Savry

Univ. Grenoble Alpes, CEA, LETI, F-38000 Grenoble, France 1

Email: firstname.name@cea.fr

Abstract

This paper presents a robust lockstep verification framework for the NaxRiscv System-on-Chip (SoC) —a
flexible, open-source, out-of-order, and superscalar RISC-V core. Our methodology integrates cycle-accurate
RTL simulation using Verilator, functional co-simulation with the Spike golden model, and constrained-random
test generation via RISCV-DV to achieve a comprehensive verification framework. Functional coverage
metrics are collected through a Questa/UVM-based verification environment, enabling early detection of subtle
behavioral mismatches and corner-case failures. Our methodology rigorously validates ISA compliance but
also significantly enhancing the overall verification process.

Introduction

Processor verification remains one of the most
challenging phases in modern hardware design, especially
given the growing complexity of contemporary
architectures. To ensure robust performance, advanced
verification techniques and specialized tools are employed
to rigorously test designs and uncover hidden bugs. In our
framework for verifying RISC-V architectures, randomized
execution scenarios are generated and detailed Register-
Transfer Level (RTL) simulation outputs are meticulously
compared against those from a trusted reference model.

 Our approach is built around a lockstep co-simulation
technique, where the Design Under Test (DUT) and a
golden Instruction Set Simulator (ISS) perform identical
operations in parallel, enabling real-time discrepancy
detection and efficient debugging. This methodology has
been applied to NaxRiscv [1]—a highly configurable, out-
of-order, and superscalar core supporting multiple ISA
extensions (including RV32/64IMAFDC), it supports
operating systems like Linux and FreeRTOS and facilitates
rapid on-FPGA prototyping when integrated with the
LiTeX [2] framework. Developed using SpinalHDL [3]—
modern hardware design language uses the Scala Build
Tool (SBT) to build the project and simulate the execution
of the core. Moreover,

Multi-level verification strategy

The verification methodology is structured as a multi-
layered approach that combines directed testing, real-world
benchmarking, and constrained-random testing to ensure a
comprehensive evaluation of both architectural and
microarchitectural aspects of the design. The process
begins with an automated Jenkins Continuous Integration
(CI) pipeline that executes standard compliance test suites
—specifically, riscv-tests and riscv-arch-tests—which serve
as established benchmarks for verifying that the Instruction

Set Architecture (ISA) and its extensions conform to the
specifications. These industry-recognized suites provide an
essential baseline by checking both basic ISA and
microarchitectural conformance.

Figure 1 : Multi-level verification strategy

Following these directed tests, the methodology
incorporates the execution of real-world benchmarks to
assess performance and software–hardware integration.
This phase involves running applications and performance1
metrics such as CoreMark and Dhrystone, as well as
executing operating system boot sequences ranging from
FreeRTOS to the Linux boot stage.

To further stress the design and explore its functional
boundaries, the strategy leverages RISCV-DV [4], a tool
that automatically generates constrained-random assembly
programs. These tests deliberately target edge cases—such
as misaligned instructions, register dependencies (RD/RS),
pipeline hazards, memory access violations, and unhandled
interrupts—thereby probing complex execution paths. In
parallel, a robust functional coverage model, based on
Universal Verification Methodology (UVM) and embedded

1 This work was funded thanks to the French national program
”Programme Investissement d’Avenir IRT Nanoelec” ANR-10-AIRT-05

RISC-V Summit Europe, Paris, 12-15th May 2025 1

Functionally validated design

Random
tests

Simu OS
Boot

Directed
tests

within RISCV-DV, ensures exhaustive validation of all ISA
features, covering various opcodes, extensions (such as F,
D, and C), and the proper interactions with system registers
(CSRs). This integrated approach guarantees that every
aspect of the design is rigorously validated, from basic
compliance to resilience under real-world conditions.

Lockstep Verification Workflow

Figure 2 : Lockstep RTL & ISS Verification Platform

We present a comprehensive lockstep verification
framework that integrates several advanced tools to ensure
both functional and architectural compliance for the
NaxRiscv SoC. At its core, RISCV-DV—a robust, open-
source framework developed by Google, coded in
SystemVerilog/UVM, this generator of randomized
instruction sequences and exhaustive test programs for the
RV32/64IMAFDC ISAs across multiple privilege modes
(M, S, and U), deliberately targeting critical edge cases to
maximize functional coverage.

These test programs are executed in SocSim, a Scala-
based multi-core SoC simulator that leverages Verilator for
cycle-accurate RTL simulation and golden Instruction Set
Simulator (ISS). The RTL simulation environment provides
precise clock-cycle modeling and deep visibility into
internal signals (such as the program counter, Control and
Status Registers (CSRs), and memory transactions), with
detailed Value Change Dump (VCD) outputs available for
further analysis. The simulator’s outputs are rigorously
compared against the functional emulation provided by
Spike—an open-source ISS that serves as our golden
reference by accurately managing CSR operations, general
and floating-point registers, and critical extensions like
Compressed, Atomics, and the Floating-Point Unit

To achieve real-time trace alignment, SocSim
incorporates the RISC-V Lock-Step (RVLS) framework
via a Java Native Interface (JNI). This integration
meticulously synchronizes instruction execution and
asynchronous events (e.g., interrupts and exceptions) on a
cycle-by-cycle basis by comparing the DUT’s state with
that of Spike (Step & Compare). In parallel, comprehensive
coverage metrics—including instruction, CSR, and branch
—are extracted from the execution traces. The DUT’s
tracer.log and Spike’s spike.log are first converted to CSV
format; then, using the Questa RTL simulator, the coverage
data is collected into a binary Unified Coverage Database

(UCDB) file and finally transformed into a human-readable
report via the “vcover report” command. This detailed
coverage analysis provides metrics for each instruction
along with various coverpoints such as operand registers,
branch outcomes, and memory alignment, ensuring that the
verification process remains both exhaustive and precise

A Jenkins-based CI pipeline automates regression testing
and dynamically scales RISCV-DV test generation until
predefined coverage targets are met, providing rapid
feedback on design modifications. By seamlessly
integrating RISCV-DV’s comprehensive test generation,
RVLS’s rigorous lockstep enforcement, and Questa/UVM’s
detailed coverage analysis, our framework effectively
eliminates blind spots, guarantees strict ISA compliance,
and facilitates early bug detection—ultimately reinforcing
the reliability of our NaxRiscv SoC implementations.

Results Overview

Our experimental results clearly demonstrate that our
SoC-level integrated lockstep verification framework can
detect critical issues that conventional core-level
simulations fail to detect. Initially, discrepancies in the
IO/memory mapping triggered ˝trap_store_access_fault˝
events. In another instance, a misaligned instruction
generated by RISCV-DV resulted in a malformed opcode,
introduce a mismatch between DUT and the ISS due to a
lack of verification of the Rd/Rs registers of certain
compressed instructions (e.g., C.LWSP) in the DUT
causing a ˝trap_load_page_fault˝ events. Additionally,
mismatches in the CSR configurations between the DUT
and the golden reference Spike, led to observable execution
anomalies (e.g., DUT missed a trap). These findings
confirm that real-time cycle-by-cycle comparison and
random generation of instruction sequences is essential to
uncover subtle design issues, thereby enhancing overall
processor reliability.

Conclusion

This work presents a robust locking verification framework
that bridges the critical gap between architectural
specifications and real-world operational integrity in the
NaxRiscv SoC. By integrating cycle-accurate simulation
(via Verilator), functional co-simulation (using Spike),
RISCV-DV-driven constrained random test generation, and
Questa/UVM-powered coverage analysis—all
synchronized through RVLS’s real-time trace alignment—
the framework significantly enhances verification efficacy.
This cohesive approach not only ensures strict architectural
compliance but also enables early detection of even the
most elusive corner-case bugs, including memory access
integrity, interrupt handling, and exception management.
With its rigorous and scalable methodology, this
framework strengthens confidence in the SoC’s functional
correctness and resilience across diverse operational
scenarios.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

Références

[1] NaxRiscv—An Open-Source OoO Superscalar Softcore, Suisse: Available online:
https://github.com/SpinalHDL/NaxRiscv, 2022.

[2] F. Kermarrec, S. Bourdeauducq, H. Badier et J. Le Lann, «LiteX—An open-source SoC builder framework
based on Migen Python DSL.,» arXiv, n° %12005.02506, 2020.

[3] «SpinalHDL,» An Open-Source high-level HDL, 2014. [En ligne]. Available:
https://github.com/SpinalHDL/SpinalHDL. [Accès le 2024].

[4] Google, «RISC-V DV,» 2019. [En ligne]. Available: https://github.com/google/riscv-dv. [Accès le 2024].

RISC-V Summit Europe, Paris, 12-15th May 2025 3

	Abstract
	Introduction
	Multi-level verification strategy
	Lockstep Verification Workflow

	Results Overview
	Conclusion

	Références

