
RISC-V Summit Europe, Paris, 12-15th May 2025 1

From RustVMM to Kata-Containers:
Securing Container Workloads with RISC-V H-ext

Based Virtualization Software
Ruoqing He1, Sheng Qu1 and Yanjun Wu1

1Institute of Software, Chinese Academy of Sciences

Abstract
Our objective is to preemptively construct a complete Rust virtualization software stack for future RISC-V

chips compliant with the RVA23 specification and server platform standards. Centered around the rust-vmm
framework, we enable lightweight hypervisors like Dragonball, StratoVirt, Cloud-Hypervisor, and
Firecracker—all designed to provide high performance, strong isolation, and virtualization-based security.
Integrating these hypervisors with Kata Containers, we explore virtualization-based isolation of containerized
workloads on RISC-V. By simulating hardware environments and leveraging forward-compatible software
designs, we aim to be fully prepared for the introduction of real RISC-V hardware that meets RVA23 standard
and RISC-V Server Platform specification. This ensures architectural parity in RISC-V's evolution with other
architectures, provides plug-and-play software validation benchmarks for future hardware, and accelerates
the maturation of the RISC-V server ecosystem from technical prototypes to production readiness through
code-driven standardization collaboration

Introduction

Onboarding software like Kata-Containers [1] is critical
for laying the foundation of a Confidential Computing
software stack that will fully support the RISC-V
architecture, equipped with H Extensions [2], AIA [3], and
IOMMU [4] capabilities. As the computing industry moves
toward more secure infrastructures, RISC-V presents a
unique opportunity with its open-source instruction set
architecture (ISA) and its potential to be tailored for
security-sensitive applications. Our lightweight
virtualization framework, built upon RustVMM [5], deeply
integrates three critical hardware security features - RISC-
V H (Hypervisor) Extension, Advanced Interrupt
Architecture (AIA), and IOMMU. This integrated
architecture delivers lightweight RISC-V virtualization
solutions including Dragonball [6], StratoVirt [7], Cloud-
Hypervisor [8], and Firecracker [9].These hypervisors,
coupled with container runtimes like Kata Containers,
provide the required isolation and performance needed in
confidential computing environments, where the stakes for
data privacy and security are higher than ever. By
proactively developing this stack ahead of hardware
availability, we ensure that once RISC-V chips with
hardware extensions for virtualization and secure memory
management hit the market, the ecosystem is “ plug-and-
play” ready.
Furthermore, by aiming to meet the RISC-V Server

Platform Specification, our stack positions itself as an
integral piece in the adoption and standardization of

Confidential Computing across RISC-V-based server
environments. We are creating an ecosystem that integrates
secure VM isolation, efficient interrupt and I/O
management, and flexible orchestration, all within a cloud-
native framework. Our approach, reliant on Rust's inherent
safety guarantees, provides a secure-by-design foundation
that mitigates common vulnerabilities seen in traditional
programming languages.

Figure 1. Secure Container or RISC-V Roadmap
This roadmap outlines our plan to enable secure container

support on RISC-V. First, we will extend RustVMM's



2 RISC-V Summit Europe, Barcelona, 5-9th June 2023

compatibility to RISC-V architecture, including but not
limited to adapting critical architecture-related crates. With
RustVMM in place, we have chosen Cloud-Hypervisor as
the primary virtual machine monitor (VMM) to be
supported in our first stage. Cloud-Hypervisor delivers
virtualization capabilities for software relies on that.
Subsequently, we will integrate RustVMM and Cloud-
Hypervisor into Kata-containers to provide secure container
implementation on RISC-V platforms. We aim to establish
a fully integrated, reliable, and thriving RISC-V
virtualization software ecosystem that enables RISC-V to
compete with x86 and ARM architectures in both
virtualization and cloud-native software ecosystems.
This forward-looking initiative not only maintains

synchronization with emerging hardware advancements but
also proactively shapes the software ecosystem required for
secure, scalable, and highly reliable RISC-V server
platforms. It empowers global cloud service providers,
enterprises, and developers to fully unlock RISC-V
architecture's potential, transforming its open customization
capabilities and security-enhanced features into core
competitive advantages for building next-generation
confidential computing infrastructure and adaptive cloud
architectures.

Methodologies

Figure 2. Upstream status
As shown in upstream status, we follow the principle of

“upstream first”. We have submitted our work (marked
with green boxes in openEuler, RustVMM, Cloud-
Hypervisor and Kata Containers) to communities
concerned, and most of them are accepted. The rest is still
under heavy development and should be ready soon.

Kata Containers
The diagram visualize the differences between Kata

Containers and traditional containers in implementing
secure containers. As shown, Kata Containers leverage a
hypervisor-based architecture to establish secure container
infrastructure. This design significantly strengthens
container security boundaries through hardware-enforced
isolation while maintaining seamless compatibility with
traditional container ecosystems. Such an architecture
enables the team to build cloud-native standards-compliant
secure virtualization layers for RISC-V based on Kata
Containers. This approach not only enhances RISC-V's
competitiveness in critical workload scenarios but also
provides an extensible technical foundation for unified
management across heterogeneous architectures.

Figure 2. Difference between traditional & Kata containers

RustVMM
Due to the absence of RISC-V SoCs with both AIA and

IOMMU ready, we are facing great challenges while trying
to upstream our work, since there is no real hardware we
could use for integrating into communities’ CI instances.
We managed to address this problem by using QEMU to
provide full-emulated RISC-V virt board with AIA and
IOMMU in place to illustrate our works are theoretically
correct, and get RISC-V code to merge and evolve with
other architectures.

Figure 3. RISC-V CI for RustVMM community

Currently, we have successfully introduced RISC-V
architecture support for RustVMM components and
facilitated the upstream merging of relevant code to achieve
full compatibility with the RISC-V architecture. The RISC-
V CI (Continuous Integration) for RustVMM was officially
launched on September 2, 2024. Since September 23,



RISC-V Summit Europe, Paris, 12-15th May 2025 3

critical core repositories such as kvm-bindings and kvm-
ioctls have successively released versions with RISC-V
support. This work establishes a critical technical
foundation for virtualization development on RISC-V, and
makes RISC-V the third officially supported architecture.

Cloud- Hypervisor
We took a similar approach in Cloud-Hypervisor

comunity to bring up CI for RISC-V. With these CIs in
place, we launched RISC-V support for architecture-
dependent crates in RustVMM community, which made
RISC-V the third architecture officially supported. The
completion of RustVMM RISC-V enables more than 1,900
projects (hosted on GitHub) to be able to support RISC-V.

Figure 4. RISC-V CI for Cloud-Hypervisor community

Cloud-Hypervisor here as a outstanding hypervisor which
is capable of working with Kata-Containers is supported on
RISC-V architecture. The overall structure of Cloud-
Hypervisor is refactored along the process of supporting
RISC-V. After its v45 release, Cloud-Hypervisor is RISC-
V enabled and Kata-Containers RISC-V integrated.

Figure5. Architecture of Cloud-Hypervisor Project

The above secure container software stack owe its
secutrity primarily to RISC-V H extension. Even if SoCs
with H extension and other features specified in RVA23
profile have not yet come out, we will continue to expand
the virtualization software ecosystem of RISC-V, and
explore the ways it could be used in secure containers.
These works will be firstly tested, verified and distributed
on openEuler [10], and extended to other distibutions.

Discussion
The key value of this work lies in paving the way for future
RISC-V hardware through a software-first strategy during
the early stages of the RISC-V hardware ecosystem's
immaturity. Despite the current absence of RISC-V
hardware simultaneously supporting the H-extension,
Advanced Interrupt Architecture (AIA), and IOMMU, we
have established comprehensive RISC-V CI pipelines
within the RustVMM and Cloud-Hypervisor communities
using a fully emulated QEMU environment. This ensures
architectural-level code evolves in sync with x86/ARM
counterparts. These achievements not only validate the
feasibility of the RISC-V virtualization software stack but
also provide plug-and-play software validation benchmarks
for hardware vendors through code-driven standardization
collaboration, significantly accelerating the RISC-V server
ecosystem's transition from prototypes to production
readiness.
Regarding community contributions, we have spearheaded
RISC-V support in three core open-source communities:
RustVMM, Cloud-Hypervisor, and Kata Containers.
Specifically:

1. RustVMM: Established RISC-V as the third
officially supported architecture after x86 and
ARM, completed adaptations for critical libraries
such as kvm-bindings and kvm-ioctls, and
extended its CI coverage to over 1,900
downstream projects.

2. Cloud-Hypervisor: Implemented architectural
refactoring to enable RISC-V support, making it
the first virtualization solution integrated with
Kata Containers on RISC-V.

3. Kata Containers: Built cloud-native standards-
compliant secure container infrastructure for
RISC-V by leveraging hypervisor-enforced
isolation.



4 RISC-V Summit Europe, Barcelona, 5-9th June 2023

Figure6. Details of the Code Contributions Across Three
Communities

We have dedicated to this course for a year, that nearly all
RISC-V-related code upstreaming, CI/CD implementations,
and architectural designs in these three communities
originate from our team. This deep engagement has not
only accelerated the maturation of the RISC-V
virtualization ecosystem but also solidified our technical
leadership within the open-source community. These
efforts establish an indispensable software foundation for
RISC-V to compete in confidential computing and cloud-
native domains.

References
[1] Kata-Containers: https://katacontainers.io/.
[2] RISC-V H Extension: https://github.com/riscv/riscv-

isa-manual.
[3] RISC-V AIA: https://github.com/riscv/riscv-aia.
[4] RISC-V IOMMU: https://github.com/riscv-non-

isa/riscv-iommu.
[5] Rust-VMM: https://github.com/rust-vmm.
[6] Dragonball: https://github.com/kata-containers/kata-

containers/tree/main/src/dragonball.
[7] StratoVirt: https://gitee.com/openeuler/stratovirt.
[8] Cloud-Hypervisor: https://www.cloudhypervisor.org/.
[9] Firecracker: https://firecracker-microvm.github.io/.
[10] openEuler: https://www.openeuler.org/en/.

https://katacontainers.io/.
https://firecracker-microvm.github.io/.

	Abstract
	Introduction
	Methodologies
	Kata Containers
	RustVMM
	Cloud- Hypervisor

	Discussion
	References

