Verification of a RISC-V system with multiple cores

Oscar Palomar!, Roberto Ignacio Genovese!, Ivan Diaz Ortega!, Albert Aguiler!, Abdul Rauf?
!Barcelona Supercomputing Center

2ARM

Abstract

Verifying complex RISC-V systems, particularly out-of-order cores and their cache hierarchies, presents significant
challenges due to the need for thorough functional coverage and reference model validation. This paper presents the
verification strategy for a RISC-V system composed of multiple cores and its cache hierarchy. We have implemented a stand-
alone UVM environment at the core-level that is then reused at the system-level testbench. Our approach employs a modified
version of Spike ISS as a reference model to ensure correct execution and validation of test cases. We use multiple directed
tests (riscv-tests, compliance), along with randomly generated binaries using riscv-dv. This work contributes a reusable
UVM testbench, an enhanced reference model, and a set of directed and randomized tests that significantly improve coverage

and bug detection in RISC-V system verification.

Introduction

Faced with the challenge to verify a complex RISC-V
design, as part of the BZL[1] (Barcelona Zettascale Lab)
project, we have developed multiple environments and
extended existing RISC-V tools to suit our needs.

The methodology we follow for design verification is the
Universal Verification Methodology (UVM). We have
created a number of UVM environments that use co-
simulation (with the RISC-V instruction set simulator Spike
[2]) to check the correctness of the design. We have created
environments for the scalar cores and for the CPU-
subsystem. In general, their specifications and interfaces are
well-defined and stable, facilitating the verification work.

Leveraging the reference model, we rely heavily on
constrained random testing. More specifically, we use
random binary generators (mostly, riscv-dv [3]) extensively
to verify the designs and uncover many bugs. Code and
functional coverage is collected and analysed to identify
corner cases in the random tests, to be targeted with changes
in the configuration of the generator and/or directed tests.

Additionally, we implement a set of assertions (SVAs),
mostly in the interfaces of selected modules.

The following sections present the environment at the core
and the system-level. We then discuss the reference model
and the tests, and the changes needed in tools to support the
verification of the system.

Core-UVM

Core-uvm is a verification environment for RISC-V cores.
The DUT is the core itself, excluding all the cache hierarchy.
It incorporates Spike as reference model for co-simulation.
We have support for three different designs, one in-order
(Sargantana) and two out-of-order cores (Lagarto KA and
Lagarto OX).

The following interfaces are used to drive or sample
signals from the DUT:

RISC-V Summit Europe, Paris, 12-15th May 2025

e complete_if: Completed (committed/retired)
instructions state. This interface has as many
entries as instructions can be completed in a cycle.
It includes PC of the instruction, value written in
the destination register, content of multiple CSRs,
etc.

e int_if: Interrupt state signals. Injects interrupt
requests to the core, and detect when it traps.

e dc_if: Data cache interface signals.

e ic_if: Instruction cache interface signals.

The Icache, Dcache and Interrupt agents monitor and drive
the corresponding interfaces, properly responding to the
core requests/responses, through dedicated UVM agents.
The Complete agent monitors the complete interface to track
execution of instructions, sending them to the scoreboard,
which compares them with the outcome of Spike, used as
reference model. Note that in a few cases, we force the value
of the DUT into Spike.

The simulation of a test typically consists in first
preloading a binary into the memory model and Spike and
then respond to core requests until a certain position in
memory is written to signal the end of test. Early termination
occurs on scoreboard mismatches, timeout (no completed
instruction in a long time) or assertions. External, timer or
software interrupts are randomly generated.

One of the relevant agents of the design is the instruction
manager. Firstly, it unifies the instruction state captured
from complete_if in time and format so that it can be
processed in the environment for the multiple cores. Also,
the instruction manager is in charge of filtering known errors
in the design so that they don’t reach the scoreboard.
Furthermore, instruction manager is in charge of filtering
false errors, such as time related RISC-V CSRs. This is
necessary due to the different nature of simulation and RTL.

CPU-Subsystem UVM

In the next higher level, the DUT is the system with three
cores (one of each kind) and three levels of cache. However,
note that although possible, the cores are not meant to be



used simultaneously, so it is effectively a single-core system
at run-time. The interfaces of the system are two AXI-M
ports (one for memory requests, another for peripherals),
one AXI-S port (for DMA), interrupt inputs and a JTAG
interface. The main components of the testbench are:

¢  Core-uvm instance configured in passive mode.

e AXI - Slave Memories to emulate main memory,
SRAM and bootrom. Modelled using the axi-mem
component from the Pulp project [4].

e JTAG - VIP to verify JTAG protocol and RISCV
debug module.

® AXI - Master VIP to support verification of DMA
bridge and be able to exchange and access different
design blocks of RTL through DMA.

e PLIC/ CLINT UVM agents to generate external,
timer and software interrupts at the subsystem level
and verify its handling by the RTL.

e UART model. An AXI crossbar from the Pulp
project is used to connect both an SRAM and the
UART to the peripheral bus.

Reference Model

Our basic reference model is the RISC-V instruction set
simulator Spike [2]. It has been modified to provide
SystemVerilog DPI calls that interact with the UVM
environment and to model implementation specific details
of the designs. We have implemented a configuration flag
(core_type) to indicate which design to model.
Core_type=Standard follows the vanilla ISA specifications
and upstream spike implementation. Examples of specific
behaviour are reset values of some CSRs or which vector
instructions are supported. We also modified it to allow the
preloading of a bootrom from an .elf file. This provides us
the flexibility we need to use Spike with different
environments and designs.

The main DPI call implemented is to execute the next
instruction (and return the simulator’s state). This is called
whenever the core commits one instruction. We also have
DPI calls to force results into Spike (due to a few known-
bugs of floating point rounding errors, values of hpm
counters, etc.), to change the external interrupt signal (in
order to mimic the core’s acknowledge of the interrupt), and
to perform a TLB walk without triggering exceptions (used
to model VIPT caches in core-uvm).

Tests

We have used a collection of regression tests composed of
the riscv-isa-tests, the riscv-arch-tests (formerly compliance)
and internal RVV ISA tests. Also a number of UVM directed
tests for verifying the JTAG and DMA interfaces.

Nevertheless, the bulk of our tests come from the random
binary generator riscv-dv [3]. We have modified it to
provide full support of rvv 1.0.0, vector memory instructions
generation with changing values of SEW and vector length.
We have also added options to further modify the kinds of
instructions to generate and provide finer control of the

RISC-V Summit Europe, Paris, 12-15th May 2025

randomization of key registers (ra, sp, tp, etc.). Apart from
this, we have fixed several issues in the code of the tool
regarding aspects affecting the exception and trap handlers,
while also expanding the customization of the trap
delegation system.

Concerning the types of tests that we generated we can
divide them in three different types:

* Basic scalar tests, which contains mainly the
usual scalar instructions together with many
different memory operation cases.

e  Basic vector tests, similar to the basic scalar ones,
but with emphasis on vector instructions and
memory operations.

e Atomic instructions stress tests, which focus on
generating randomized atomic instructions.

Figure below shows an example of a run with multiple
randomly generated binaries. All binaries are generated with
a similar amount of static instructions but the execution of
exceptions and interrupts leads significant differences in the
number of executed instructions.

Our initial set of regression jobs used riscv-tests [5] and a
few other directed tests proved to be necessary but not
sufficient to detect buggy updates in the code, that would
cause a high number of failing tests in the following runs.
As a solution, we created a batch of random tests to
complement the regression. The initial batch was later
improved by selecting a handful of random tests that had
uncovered difficult bugs. This approach ended up being
much robust.

Conclusions

We have managed to verify a complex design with
multiple cores and a cache hierarchy (currently under
fabrication). Careful design and implementation of the core
UVM has allowed using it for multiple cores, and reuse it in
the system level. We have benefitted greatly of tools like
Spike, riscv-dv or riscv-tests, adapting them as needed. We
plan to contribute the changes that are not only relevant for
our design, but may be beneficial to the community.

Acknowledgements

This project is promoted by the Ministry for Digital
Transformation and the Civil Service, within the framework



of the Recovery, Transformation and Resilience Plan -
Funded by the European Union - NextGenerationEU.

References

[1] Barcelona Zettascale Lab https://bzl.es

[2] Spike RISC-V ISA Simulator https://github.com/riscv-
software-src/riscv-isa-sim.

[3] RISCV-DV https://github.com/chipsalliance/riscv-dv

[4] A. Kurth et al., "An Open-Source Platform for High-
Performance Non-Coherent On-Chip Communication," in
IEEE Transactions on Computers, vol. 71, no. 8, pp. 1794-
1809, 1 Aug. 2022, doi: 10.1109/TC.2021.3107726.
[5] RISCV-Tests https://github.com/riscv-software-
src/riscv-tests/

RISC-V Summit Europe, Paris, 12-15th May 2025



