
RISC-V Summit Europe, Paris, 12-15th May 2025 1

Verification of a RISC-V system with multiple cores
Oscar Palomar1, Roberto Ignacio Genovese1, Iván Díaz Ortega1, Albert Aguiler1, Abdul Rauf2

1Barcelona Supercomputing Center
2ARM

Abstract
Verifying complex RISC-V systems, particularly out-of-order cores and their cache hierarchies, presents significantchallenges due to the need for thorough functional coverage and reference model validation. This paper presents theverification strategy for a RISC-V system composed of multiple cores and its cache hierarchy. We have implemented a stand-alone UVM environment at the core-level that is then reused at the system-level testbench. Our approach employs a modifiedversion of Spike ISS as a reference model to ensure correct execution and validation of test cases. We use multiple directedtests (riscv-tests, compliance), along with randomly generated binaries using riscv-dv. This work contributes a reusableUVM testbench, an enhanced reference model, and a set of directed and randomized tests that significantly improve coverageand bug detection in RISC-V system verification.

Introduction
Faced with the challenge to verify a complex RISC-Vdesign, as part of the BZL[1] (Barcelona Zettascale Lab)project, we have developed multiple environments andextended existing RISC-V tools to suit our needs.The methodology we follow for design verification is theUniversal Verification Methodology (UVM). We havecreated a number of UVM environments that use co-simulation (with the RISC-V instruction set simulator Spike[2]) to check the correctness of the design. We have createdenvironments for the scalar cores and for the CPU-subsystem. In general, their specifications and interfaces arewell-defined and stable, facilitating the verification work.Leveraging the reference model, we rely heavily onconstrained random testing. More specifically, we userandom binary generators (mostly, riscv-dv [3]) extensivelyto verify the designs and uncover many bugs. Code andfunctional coverage is collected and analysed to identifycorner cases in the random tests, to be targeted with changesin the configuration of the generator and/or directed tests.Additionally, we implement a set of assertions (SVAs),mostly in the interfaces of selected modules.The following sections present the environment at the coreand the system-level. We then discuss the reference modeland the tests, and the changes needed in tools to support theverification of the system.

Core-UVM
Core-uvm is a verification environment for RISC-V cores.The DUT is the core itself, excluding all the cache hierarchy.It incorporates Spike as reference model for co-simulation.We have support for three different designs, one in-order(Sargantana) and two out-of-order cores (Lagarto KA andLagarto OX).The following interfaces are used to drive or samplesignals from the DUT:

 complete_if: Completed (committed/retired)instructions state. This interface has as manyentries as instructions can be completed in a cycle.It includes PC of the instruction, value written inthe destination register, content of multiple CSRs,etc. int_if: Interrupt state signals. Injects interruptrequests to the core, and detect when it traps. dc_if: Data cache interface signals. ic_if: Instruction cache interface signals.The Icache, Dcache and Interrupt agents monitor and drivethe corresponding interfaces, properly responding to thecore requests/responses, through dedicated UVM agents.The Complete agent monitors the complete interface to trackexecution of instructions, sending them to the scoreboard,which compares them with the outcome of Spike, used asreference model. Note that in a few cases, we force the valueof the DUT into Spike.The simulation of a test typically consists in firstpreloading a binary into the memory model and Spike andthen respond to core requests until a certain position inmemory is written to signal the end of test. Early terminationoccurs on scoreboard mismatches, timeout (no completedinstruction in a long time) or assertions. External, timer orsoftware interrupts are randomly generated.One of the relevant agents of the design is the instructionmanager. Firstly, it unifies the instruction state capturedfrom complete_if in time and format so that it can beprocessed in the environment for the multiple cores. Also,the instruction manager is in charge of filtering known errorsin the design so that they don’t reach the scoreboard.Furthermore, instruction manager is in charge of filteringfalse errors, such as time related RISC-V CSRs. This isnecessary due to the different nature of simulation and RTL.
CPU-Subsystem UVM

In the next higher level, the DUT is the system with threecores (one of each kind) and three levels of cache. However,note that although possible, the cores are not meant to be



RISC-V Summit Europe, Paris, 12-15th May 2025 2

used simultaneously, so it is effectively a single-core systemat run-time. The interfaces of the system are two AXI-Mports (one for memory requests, another for peripherals),one AXI-S port (for DMA), interrupt inputs and a JTAGinterface. The main components of the testbench are: Core-uvm instance configured in passive mode. AXI - Slave Memories to emulate main memory,SRAM and bootrom. Modelled using the axi-memcomponent from the Pulp project [4]. JTAG - VIP to verify JTAG protocol and RISCVdebug module. AXI - Master VIP to support verification of DMAbridge and be able to exchange and access differentdesign blocks of RTL through DMA. PLIC / CLINT UVM agents to generate external,timer and software interrupts at the subsystem leveland verify its handling by the RTL. UART model. An AXI crossbar from the Pulpproject is used to connect both an SRAM and theUART to the peripheral bus.
Reference Model

Our basic reference model is the RISC-V instruction setsimulator Spike [2]. It has been modified to provideSystemVerilog DPI calls that interact with the UVMenvironment and to model implementation specific detailsof the designs. We have implemented a configuration flag(core_type) to indicate which design to model.Core_type=Standard follows the vanilla ISA specificationsand upstream spike implementation. Examples of specificbehaviour are reset values of some CSRs or which vectorinstructions are supported. We also modified it to allow thepreloading of a bootrom from an .elf file. This provides usthe flexibility we need to use Spike with differentenvironments and designs.The main DPI call implemented is to execute the nextinstruction (and return the simulator’s state). This is calledwhenever the core commits one instruction. We also haveDPI calls to force results into Spike (due to a few known-bugs of floating point rounding errors, values of hpmcounters, etc.), to change the external interrupt signal (inorder to mimic the core’s acknowledge of the interrupt), andto perform a TLB walk without triggering exceptions (usedto model VIPT caches in core-uvm).
Tests

We have used a collection of regression tests composed ofthe riscv-isa-tests, the riscv-arch-tests (formerly compliance)and internal RVV ISA tests. Also a number of UVM directedtests for verifying the JTAG and DMA interfaces.Nevertheless, the bulk of our tests come from the randombinary generator riscv-dv [3]. We have modified it toprovide full support of rvv 1.0.0, vector memory instructionsgeneration with changing values of SEW and vector length.We have also added options to further modify the kinds ofinstructions to generate and provide finer control of the

randomization of key registers (ra, sp, tp, etc.). Apart fromthis, we have fixed several issues in the code of the toolregarding aspects affecting the exception and trap handlers,while also expanding the customization of the trapdelegation system.Concerning the types of tests that we generated we candivide them in three different types: Basic scalar tests, which contains mainly theusual scalar instructions together with manydifferent memory operation cases. Basic vector tests, similar to the basic scalar ones,but with emphasis on vector instructions andmemory operations. Atomic instructions stress tests, which focus ongenerating randomized atomic instructions.Figure below shows an example of a run with multiplerandomly generated binaries. All binaries are generated witha similar amount of static instructions but the execution ofexceptions and interrupts leads significant differences in thenumber of executed instructions.

Our initial set of regression jobs used riscv-tests [5] and afew other directed tests proved to be necessary but notsufficient to detect buggy updates in the code, that wouldcause a high number of failing tests in the following runs.As a solution, we created a batch of random tests tocomplement the regression. The initial batch was laterimproved by selecting a handful of random tests that haduncovered difficult bugs. This approach ended up beingmuch robust.
Conclusions

We have managed to verify a complex design withmultiple cores and a cache hierarchy (currently underfabrication). Careful design and implementation of the coreUVM has allowed using it for multiple cores, and reuse it inthe system level. We have benefitted greatly of tools likeSpike, riscv-dv or riscv-tests, adapting them as needed. Weplan to contribute the changes that are not only relevant forour design, but may be beneficial to the community.
Acknowledgements

This project is promoted by the Ministry for DigitalTransformation and the Civil Service, within the framework



RISC-V Summit Europe, Paris, 12-15th May 2025 3

of the Recovery, Transformation and Resilience Plan -Funded by the European Union - NextGenerationEU.

References
[1] Barcelona Zettascale Lab https://bzl.es[2] Spike RISC-V ISA Simulator https://github.com/riscv-software-src/riscv-isa-sim.[3] RISCV-DV https://github.com/chipsalliance/riscv-dv[4] A. Kurth et al., "An Open-Source Platform for High-Performance Non-Coherent On-Chip Communication," inIEEE Transactions on Computers, vol. 71, no. 8, pp. 1794-1809, 1 Aug. 2022, doi: 10.1109/TC.2021.3107726.[5] RISCV-Tests https://github.com/riscv-software-src/riscv-tests/


