
Verification of a RISC-V system with multiple cores
Oscar Palomar¹, Roberto Ignacio Genovese¹, Iván Díaz Ortega¹, Albert Aguiler¹, Abdul Rauf²

¹Barcelona Supercomputing Center ²ARM
We present a verification strategy for complex RISC-V systems—especially those with out-of-order cores and multi-level cache hierarchies.
Our approach leverages a reusable UVM testbench, a modified version of the Spike ISS as a reference model, and a combination of directed
tests and randomly generated binaries (using riscv-dv) to achieve comprehensive coverage and bug detection.

Methodology
UVM Environments

 Core-UVM:
 Targets individual cores (in-order and out-of-order). We have support for three different designs:
one in-order (Sargantana) and two out-of-order cores (Lagarto KA and Lagarto OX).

 Incorporates key interfaces:
 Complete: containing the state (PC, results, CSRs, etc.) of completed/committed instructions.
 Interrupt: interrupt state signals, to inject interrupts to the core and detect when it traps.
 Data and Instruction cache signals.

 Uses a scoreboard to compare execution outcomes with the reference model.
 CPU-Subsystem UVM:

 Verifies a system-level design integrating multiple cores (operated individually) and three cache levels.
 Includes Core-UVM in passive mode
 Includes additional components:

 AXI - Slave Memories to emulate main memory, SRAM and bootrom. Modelled using the AXI-mem
component from the Pulp project.

 AXI - Master VIP to support verification of DMA bridge and be able to exchange and access different design
blocks of RTL through DMA.

 JTAG - VIP to verify JTAG protocol and RISCV debug module.
 PLIC / CLINT UVM agents to generate external, timer and software interrupts at the subsystem level and
verify its handling by the RTL.

 UART model. An AXI crossbar from the Pulp project is used to connect both an SRAM and the UART to the
peripheral bus.

Reference Model
 Modified Spike Instruction Set Simulator:

 Enhanced with SystemVerilog DPI calls to interact with UVM, for step-by-step cosimulation.
 Main DPI functions are:

 To execute last committed instruction and return the simulator state.
 To change external/timer/software interrupt behavior (in order to mimic the core’s ack of the interrupts).
 To perform a TLB walk without triggering exceptions (to model VIPT caches in core-uvm).
 To force RTL results into Spike (due to a few known bugs of floating point rounding errors, values of hpm
counters, etc.)

 Supports configuration flags (e.g., core_type) to emulate various design behaviors (e.g., reset values of some
CSRs, supported vector instructions, etc.).

Testing Strategy
 Directed Tests:

 RISCV-isa-tests.
 RISCV-arch-tests (formerly compliance tests).
 Internally developed ISA tests.
 UVM directed tests for verifying the JTAG and DMA interfaces

 Randomized Tests:
 Generated using a modified version of RISCV-DV to uncover corner cases and bugs.
 Modifications include:

 Full support of RVV 1.0 vector extension.
 Vector memory instructions generation with changing values of SEW and vector length.
 Finer control of the randomization of key registers (ra, sp, tp, etc.).
 Extension and customization of the trap delegation system.

 Incorporation of constrained random testing and assertion checks.

Conclusions
 Key Contributions:

 A reusable UVM testbench adaptable for both core and system-level verification.
 Enhancements to the Spike ISS for improved simulation fidelity.
 A robust combination of directed and randomized testing methodologies that substantially improve
coverage and bug detection.

 Future Work:
 Extending the verification environment for simultaneous multi-core operation.
 Contributing tool enhancements back to the community for broader use.

This project is promoted by the Ministry for Digital Transformation and the Civil Service, within the framework of the Recovery, Transformation and
Resilience Plan - Funded by the European Union - NextGenerationEU

www.bzl.es

BARCELONA ZETTASCALE LAB


