An Architecture Design for Expressive Security

Jason Zhijingcheng Yu! Prateek Saxena

School of Computing, National University of Singapore

Abstract

Today’s computer systems face many security challenges such as memory safety violations, pressing need for fine-
grained isolation, and growing demand for support of non-traditional trust models (e.g., confidential computing).
The prevalent approach to those challenges at the architecture level is security extensions designed to address
individual security requirements. This patchwork of special-purpose security extensions has two main problems.
Firstly, it is difficult for software to rely on them because of varying support in hardware implementations. The
hardware vendors can also modify or even deprecate security extensions at any time. Secondly, when software
desires multiple security goals, it has to compose multiple security extensions, which is often difficult or even
impossible. In light of this, we create CAPSTONE, a new architecture design that provides a unified foundation
for achieving expressive security goals. CAPSTONE adopts a capability-based model and extends it further to
support exclusive memory ownership, revocable access delegation, and extensible privilege hierarchies. We show
that CAPSTONE enables various use cases such as two-way isolation as required by confidential computing that is
arbitrarily nestable, full memory safety, and detection of Rust principle violations, all through a single uniform
capability-based abstraction. We also present our design of a matching modular software system with finely
tsolated components as well as our hardware implementation of a concrete RISC-V-based version of CAPSTONE.

Introduction

Computer systems face many security challenges to-
day. For example, despite decades of mitigation efforts,
memory safety violations continue to account for about
70% of reported software security vulnerabilities [1].
Increasingly complex software such as web browsers
and monolithic OS kernels calls for fine-grained isola-
tion. New application scenarios such as confidential
computing have also emerged. They abandon the
traditional trust model and demand protection from
privileged software traditionally assumed trustworthy.

Those issues are challenging to the computer system
world, in large part due to the limitations of main-
stream architecture designs. In response, the prevalent
approach in the industry to those challenges is security
extensions, which are minor changes or additions to
an existing architecture to in effect patch its design.
Each security extension typically targets a specific se-
curity goal. For example, Intel MPK targets page-level
intra-process isolation, ARM RME targets confiden-
tial virtual machines. Such an approach has led to a
patchwork of security extensions with different goals,
threat models, and abstractions.

This patchwork of security extensions has two main
problems. Firstly, it is difficult for software to rely
on specific security extensions. Hardware implementa-
tions support different subsets of them, and hardware
vendors are free to change or even deprecate a security
extension at any time. This has for example happened
to Intel MPX and Intel SGX (on consumer hardware),
which Intel deprecated in 2021. Secondly, when soft-

*Corresponding author: yu.zhi@comp.nus.edu.sg

RISC-V Summit Europe, Paris, 12-15th May 2025

ware needs to achieve multiple security goals, e.g.,
both fine-grained intra-process isolation and confiden-
tial computing, they must compose multiple security
extensions. However, in many cases, such composition
is difficult if not impossible. For example, SGXLock [2]
and SGXJail [3] propose using Intel MPK to protect
a host process from SGX enclaves running inside the
same virtual address space. This requires them to
devise ad hoc mechanisms for banning enclave soft-
ware from modifying PKRU registers. Not only are
those mechanisms ad hoc, but they also trade off the
possibility of using MPK inside enclaves.

Our proposal. Instead of relying on a patchwork of
separately designed security extensions, we propose
rethinking the architecture abstraction with fundamen-
tal security considerations. We present CAPSTONE,
a new architecture design which supports expressive
security goals with a simple uniform architecture ab-
straction based on capabilities. It extends the basic
capability-based model to further provide necessary
security requirements including exclusive memory own-
ership, revocable access delegation, and extensible
privilege hierarchies. We show how a concrete RISC-
V-based version of CAPSTONE enables various program
safety and isolation use cases, including full memory
safety and nestable two-way isolation.

Design Overview

Desired Properties

We summarise four basic properties that are essential
to achieving our goal of a uniform architectural ab-

mailto:yu.zhi@comp.nus.edu.sg

straction for expressive security. We refer to each unit
of isolated software component a domain.

Exclusive memory ownership. The abstraction
should guarantee exclusive ownership to specific mem-
ory regions by a domain. Such guarantee is needed
not only in one-way or hierarchical scenarios (e.g.,
how an OS kernel maintains exclusive ownership over
kernel memory), but also in two-way scenarios (e.g.,
confidential virtual machines or enclaves).

Revocable access delegation. A domain should
be allowed to delegate access to its memory resources
to another domain. Such delegation needs to be revo-
cable: the delegator should be allowed to invalidate
the delegated access at any time. This corresponds to
mechanisms such as virtual memory as means for priv-
ileged software to delegate memory to less privileged
software in the hierarchical case, and memory sharing
in the more general case.

Extensible privilege hierarchy. Traditional archi-
tectures have privilege hierarchies of fixed levels (e.g.,
U-, S-, and M-modes). The demand for containerisa-
tion, fine-grained isolation, and nested virtualisation
has revealed the limitation of such a design. It is
thus desirable to allow such privilege hierarchies to
be extensible rather than fixed. Any domain wishing
to further isolate part of itself while still remaining
in control of managing of its resources can choose to
extend this hierarchy further.

Secure domain switching. Preemptive domain
switching is necessary to prevent denial-of-service
against the whole system. When preemption takes
place, all the above properties should still be upheld.

Capability-based Model in CAPSTONE

CAPSTONE is based on capabilities. A capability is an
unforgeable token which conveys authority to access
memory resources. It encodes information including
memory bounds and access permissions. Software uses
capabilities instead of raw pointers to access mem-
ory, upon which the hardware performs checks on the
bounds and permissions. A basic capability-based
model does not provide the above properties. CAP-
STONE accordingly extends the basic model to provide
those properties. Central to the CAPSTONE model
are distinct capability types. Linear capabilities guar-
anteedly do not overlap with other capabilities and
provides exclusive memory ownership. CAPSTONE al-
lows capabilities to be directly passed across domains
to delegate memory access. Capabilities that have
been passed out can later be reclaimed at any time
with a corresponding revocation capability.

Case Studies

We have designed and implemented CAPSTONE based
on RISC-V. We show that it supports various security
goals with a uniform abstraction.

Nestable two-way isolation. We present a modular
software stack design using CAPSTONE capabilities for
isolation. The isolation is two-way: neither side of a
software interface needs to trust the other for integrity
and confidentiality of its private data. The isolation
still allows system software to manage memory re-
sources and reclaim allocated memory at any time,
but without being able to access already allocated
memory regions. Moreover, such revocation mecha-
nism defines a privilege hierarchy that is extensible.
A software component can allocate memory to an iso-
lated subcomponent and retain the privilege to revoke
it later, regardless of what the latter does.

Safety of mixed Rust code. Rust programs follow
strict disciplines to guarantee their safety. In Rust
code mixed with unsafe Rust, FFI, and inline assembly,
however, the compiler is unable to statically enforce
such disciplines. The CAPSTONE abstraction provides
a way to detect some violations of those disciplines at
the binary level in mixed Rust code during run-time,
in addition to providing full memory safety. This use
case also reveals some common principles that both
Rust and CAPSTONE follow in their designs, despite
their belonging to different abstraction levels and being
apparently unrelated.

References

[1] Matt Miller. MSRC-Security-
Research/Presentations/2019 02 BlueHatIL/2019 01
- BlueHatIL - Trends, Challenge, and Shifts in
Software Vulnerability Mitigation.Pdf at Master
Microsoft/MSRC-Security-Research. GitHub. 2019.
URL: https : / / github . com / microsoft / MSRC -
Security - Research / blob / master / presentations /
2019 _ 02 _BlueHatIL /2019 _019%20 - %20BlueHatIL %20 -
%20Trends’%2C%20challenge’2C%20and%20shifts%20in%
20software’,20vulnerability%20mitigation.pdf (visited
on 01/17/2025).

[2] Yuan Chen et al. “SGXLock: Towards Efficiently Establish-
ing Mutual Distrust Between Host Application and Enclave
for SGX”. In: 31st USENIX Security Symposium, USENIX
Security 2022, Boston, MA, USA, August 10-12, 2022. Ed.
by Kevin R. B. Butler and Kurt Thomas. USENIX Asso-
ciation, 2022, pp. 4129-4146. URL: https://www.usenix.
org/conference/usenixsecurity22/presentation/chen-
yuan.

[3] Samuel Weiser et al. “SGXJail: Defeating Enclave Malware
via Confinement”. In: 22nd International Symposium on
Research in Attacks, Intrusions and Defenses, RAID 2019,
Chaoyang District, Beijing, China, September 23-25, 2019.
USENIX Association, 2019, pp. 353-366. URL: https://
www . usenix . org/conference/raid2019/presentation/
weiser.

RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_BlueHatIL/2019_01%20-%20BlueHatIL%20-%20Trends%2C%20challenge%2C%20and%20shifts%20in%20software%20vulnerability%20mitigation.pdf
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://www.usenix.org/conference/usenixsecurity22/presentation/chen-yuan
https://www.usenix.org/conference/raid2019/presentation/weiser
https://www.usenix.org/conference/raid2019/presentation/weiser
https://www.usenix.org/conference/raid2019/presentation/weiser

	Introduction
	Design Overview
	Desired Properties
	Capability-based Model in Capstone

	Case Studies

