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Abstract

State-of-the-art hardware countermeasures against fault attacks are based, among others, on control flow and code integrity
checking. These integrities can be asserted by Generalized Path Signature Analysis and Continuous Signature Monitoring.
However, supporting such mechanisms requires a dedicated compiler flow and does not support indirect jumps. In this work
we propose a technique based on a hardware/software runtime to generate those signatures while executing unmodified
COTS RISC-V binaries. The proposed approach has been implemented on a pipelined rv32i processor, and experimental
results show an average slowdown of ×1.82 compared to unprotected implementations while being completely compiler
independent.

Introduction
Because of their nature, embedded systems are

prone to physical attacks. Several works have demon-
strated that a well-designed cryptographic applica-
tion, whose implementation is considered safe, can be
compromised with fault injection attacks (eg., laser,
EM, clock or power glitch), which induce an incorrect
behavior of the victim processor or a data leak [1].

Countermeasures against such faults can be imple-
mented both in software or in hardware. Software
countermeasures, often inserted at compile time, con-
sist of duplicating part of the instructions to detect
and counter fault injections. This type of countermea-
sures has reached its limits with the emergence of
attacker models allowing for several faults happening
in a single execution. On the other hand, hardware
countermeasures rely on a modified processor mi-
croarchitecture which ensures some form of Control
Flow Integrity (CFI) and code integrity. Among the
numerous existing techniques, Generalized Path Sig-
nature Analysis (GPSA) and Continuous Signature
Monitoring (CSM) [3] happen to provide the best
trade-off between sensitivity and area/performance
overhead.

GPSA/CSM relies on cryptographic signatures to
ensure integrity. Throughout the execution, the pro-
cessor computes a signature based on previously
executed instructions. The dynamic signature is ver-
ified against a reference signature at each branch
and patches are used to correct the signature when
executing branches. Additional instructions are there-
fore needed to load signatures during the execution.
Besides, patches and reference signatures must be
computed ahead of time and inserted in the exe-
cutable.
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In GPSA/CSM, the processor datapath is consid-
ered as being protected against faults, for example
through error-detecting codes in both pipeline stage
registers and data/code memory.

This technique is implemented in The SCI-FI RISC-
V core [4], along with an additional mechanism that
protects pipeline control signals through some form
of redundancy.

SCI-FI and other existing approaches share com-
mon limitations: i) the target application needs a
custom compilation flow to embed signature and
patches; ii) indirect branches cannot be handled
without strong assumptions on the possible targets;
iii) function calls, returns, and interrupts require to
store/restore signatures which increases attack sur-
face.

Previous work [2] overcomes these limitations with
a runtime environment for the generation of GPSA
values, relying on an interrupt mechanism to handle
the GPSA values. This solution comes with a high
cost, in both time and area.

In this paper, we present a method to mitigate the
high overheads induced by the method of Savary et
al. [2]. Our approach relies not only on a runtime
environment, but also on a GPSA value generation
when deploying the program. Our runtime also trans-
parently handles indirect branches, function calls,
interrupts, and context switches.

We have designed a proof of concept implementa-
tion based on the Comet RISC-V processor [5]. In our
implementation, the pipeline is modified to check
signatures on control flow instructions and trigger an
interrupt to update patches and signatures whenever
an indirect jump with missing signature is executed.

Our approach has been validated through fault
injection simulations to ensure that protection was
effective. The experimental study also shows that
the average performance slowdown factor due to
dynamic analysis is ×1.82.
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Figure 1: Runime overhead on Embench-IoT. The first column corresponds to [2] with a ps-mem main memory of 128 lines,
4-associative. GPSA deploy corresponds to the solution presented in this paper. registers correspond to two sets of 16 128bits
register for indirect jumps, and other instructions, gpsa values.

Ahead of Time Analysis for GPSA
In order to apply GPSA protection on COTS bi-

naries, but with less overheads than existing ap-
proaches, we propose to compute the GPSA values
ahead of time. These values are then stored in data
memory.

During execution, we need the hardware to easily
access the GPSA values of the executed instruction.
To do this, these values are stored with the following
structure: a list of tuple, each corresponding to a
control flow instruction, sorted by PC. To ease the
data cache fetching in memory, the tuples addresses
are align to the data cache line size. A register is also
added to the core, pointing to the values of the next
control flow instruction to be executed.

To browse the list of tuple in constant time, it is
sorted by PC and a fourth value is contained in the
tuples: the address offset. In the tuple corresponding
to an instruction a, the offset is the difference between
the address of this tuple and the address of the tuple
corresponding to the control flow instruction follow-
ing the target of the instruction a. With this structure,
when the CCFI component processes a control flow
instruction, it loads the data cache line containing
the values of this instruction. With these values, it
verifies the dynamic signature. If the branch is taken,
the signature is updated and the address of the tuple
corresponding to the next instruction is obtained by
adding the offset to the current tuple address. Other-
wise, the corresponding tuple is the following tuple
in the list, because it is sorted by PC.

Concerning patches for indirect jumps, as their
targets cannot be known ahead of time, their com-
putation is left to an interrupt mechanism, similar to
the one from Savary et al. [2].

Experimental study
We implemented our solution on the Comet RISC-

V processor. The overall area overhead has been
evaluated thanks to an HLS tool and is presented in
the Table 1.

The figure 1 shows the slowdown between the pre-

Core area(µm2) overhead
PS-Mem [2] 150311 126.6%
AoT GPSA 74856 12.9%
AoT GPSA + registers 86130 29.9%

Table 1: Area overhead of different solutions. PS-Mem refers to
solution from [2] with a 4-associative 128 lines main memory.
AoT GPSA is the solution presented in this paper. Registers
represents two sets of 16 128bits registers for GPSA values.

vious solution from Savary et al. [2] and our solution
on the Embench-IoT benchmarks [6], normalized on
the performances of an unmodified Comet. Results
show a slow-down factor between 1.0 and 5.23, with
an average of ×1.82.

Conclusion
In this paper, we propose a method to apply GPSA

and CSM protections on unmodified binaries, with
an average runtime overhead of ×1.82 and area over-
head of 30%. As far as we know, this is the best hard-
ware/software implementation for GPSA without
compiler dependence and allowing integrity proper-
ties to hold while handling indirect jumps, function
calls, interrupts as well as context switches.
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