Hardware/Software Runtime for GPSA Protection
in RISC-V Embedded Cores
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How to protect embedded cores from fault injection whithout modifying the binaries?

Summary
Context: embedded systems are Problem: how to protect the Our approach: use known techniques to ensure
energy constrained and subject to processor against fault attacks micro-architectural level integrity properties and
fault attacks. without having to modify the adapt them with HW/SW runtime for GPSA
binaries ? mechanisms.

Background

Fault Attacks [1] GPSA and CSM1 [2]

- cause an error in a software from hardware _ detect control flow errors

_ Iaser, EM pulse, clock or power glitch - rely on a signature system,

- Can Impact control flow encoding each executed instruction
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Compiler Generation [3] Interrupt Generation [4]

- common implementation - protects any program and handles dynamic events GPSA

- cannot handle dymanic events - high cost, in both time and area interrupt

- requires a dedicated compiler toolchain - does not provide code protection

1 Generalized Path Signature Analysis and Continuous Singature Monitoring

Our approach

Use a static analysis for generation at deployment time, completed with a runtime generator
- can run any RISC-V executable off-the-shelf
- handle indirect jJumps and context switches through Dynamic GPSA

(1)CFG building @ GPSA building
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CFG in Memory

Results

Bl PS-Mem 4-associative 128 lines (avg. 3.347)
1 HEE AoT GPSA (avg. 2.633)
B AoT GPSA + registers (avg. 1.816)

x22.097

- Implemented on Comet RISC-V core [5]
- evaluated on embench-iot [6]

- average slowdown of x1.82

- results show ~30% area overhead
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