Hardware/Software Runtime for GPSA Protection
in RISC-V Embedded Cores

rennes

Louis SAVARY Simon ROKICKI Steven DERRIEN
Inria, IRISA, Université de Rennes, ENS Rennes ,Z:‘ o

N\ Université | e
//"\\ de Rennes Llouls.sava Fy@ln ria.fr I R I S A

How to protect embedded cores from fault injection whithout modifying the binaries?

Summary
Context: embedded systems are Problem: how to protect the Our approach: use known techniques to ensure
energy constrained and subject to processor against fault attacks micro-architectural level integrity properties and
fault attacks. without having to modify the adapt them with HW/SW runtime for GPSA
binaries ? mechanisms.

Background

Fault Attacks [1] GPSA and CSM1 [2]

- cause an error in a software from hardware _ detect control flow errors

_ Iaser, EM pulse, clock or power glitch - rely on a signature system,

- Can Impact control flow encoding each executed instruction

Program Executable File Processor Processor Dedicated

Sources N Og;;::rzg Executable File Operating Memory

——3» Compiler Program 1 Program System 1 GPSA values

L) —)GPSA values C&;omponent CF] Component (/

Compiler Generation [3] Interrupt Generation [4]

- common implementation - protects any program and handles dynamic events GPSA

- cannot handle dymanic events - high cost, in both time and area interrupt

- requires a dedicated compiler toolchain - does not provide code protection

1 Generalized Path Signature Analysis and Continuous Singature Monitoring

Our approach

Use a static analysis for generation at deployment time, completed with a runtime generator
- can run any RISC-V executable off-the-shelf
- handle indirect jJumps and context switches through Dynamic GPSA

(1)CFG building @ GPSA building
Function CFG
v
Program Instructions
I — : Interr
RISC-V elf blt toéal,OXC \ PC Offset | Signature Patch H;endlljeet
0x23000: 0x10124 0x20 — A GPSA Routine
SRivEe Tde e BTae bez to, 0x10 » 0x23010:] 0x1012C 0x20 e .
R :i,ec)axs§ i 0x23020:[0x10134 OXTTid0 > src: ret ref
10x10128 andi te, te@, oxi| A4 £ / 0x23030:] 0x1013C 0 0 tgt: addi a5, a5, -4 A
0x1012C bez tO, 0x10 ' .
10x10130 addi a0, a0, OX8! jmp 0x10120 slli a4, a4, 3 f—l()
10x10134 jmp 0x10120 ’ \ 4 srli a3, a3. 29
/0x10138 ldw a0, 4(a0) | 3 =
oxtonsc ret - v T Sie-lien nxtbr: jal 0x251a0
ret iF
tgt: addi a5, a5, -4
slli a4, a4, 3 @ @* T
a) binary code sample b) CFG and list of basic blocks c) sorted list of GPSA values srli a3, a3, 29 - . N
Y patch: patch:
nxtbr: jal 0x251a0 Interrupt et 7 T Y 4
Terminator v o
@ Q
@1 @2 @1

CFG in Memory

Results

Bl PS-Mem 4-associative 128 lines (avg. 3.347)
1 HEE AoT GPSA (avg. 2.633)
B AoT GPSA + registers (avg. 1.816)

x22.097

- Implemented on Comet RISC-V core [5]
- evaluated on embench-iot [6]

- average slowdown of x1.82

- results show ~30% area overhead

o - N (OV) H (9)] (@) ~ o

e° © eV)

5
\C o
o

\ .0
o O
‘ eco 0\(6\)

O\ A
\O
Q c)Q\\

References & Acknowl&edgements

The ARSENE project was funded by the “France 2030” government investment plan managed by the French National Research Agency, under the reference " ANR-22-PECY-0004
[1] J. Laurent, et al. "Fault Injection on Hidden Registers in a RISC-V Rocket Processor and Software [4] L. Savary, et al. "Hardware/Software Runtime for GPSA Protection in RISC-V Embedded Cores." DATE 2025

Countermeasures.” DATE 2019 [5] S. Rokicki, etal. "What You Simulate Is What You Synthesize: Designing a Processor Core from C++
[2] M. Werner, et al."Protecting the Control Flow of Embedded Processors against Fault Attacks." CARDIS 2015 Specifications." ICCAD 2019

[3] T. Chamelot et al. "SCI-Fl: Control Signal, Code, and Control Flow Integrity against Fault Injection Attacks," [6] David Patterson and Jeremy Bennett and Palmer Dabbelt, Cesare Garlati and G. S. Madhusudan and Trevor
DATE 2022 Mudge. Embench: Open Benchmarks for Embedded Platforms. https://github.com/embench/embench-iot

