
Finding More Bugs in Your RISC-V CPUs with
DiffTest and XFUZZ

Yinan Xu
Institute of Computing Technology, Chinese Academy of Sciences

Abstract

Ensuring the functional correctness of RISC-V processors is increasingly challenging due to complex designs
and non-deterministic behaviors. Traditional design verification (DV) methods require extensive manual effort
and often fail to explore the vast state space of modern CPUs. We present an automated verification framework
that integrates DiffTest for co-simulation and XFUZZ for coverage-guided fuzzing.

DiffTest employs the Diff-Rule-Based Agile Verification (DRAV) method and standardized information probes
to refine the reference model (REF) dynamically, ensuring robust discrepancy detection. XFUZZ enhances test
generation through footprint memory-based mutation and reuses the LibAFL fuzzing engine to systematically
explore execution paths. Our framework achieves 95.3% coverage in less than 10 hours using SPEC
CPU2006 seeds and uncovers four long-standing functional bugs, including one that persisted for nearly 10
years. These results validate our approach for improving RISC-V processor verification.

Introduction

The rapid evolution of RISC-V processors and the rise
of open-source hardware have significantly increased
CPU design complexity. Ensuring functional correct-
ness is challenging due to intricate microarchitectural
optimizations and non-deterministic behaviors. Tra-
ditional design verification (DV) methods, reliant on
manual test development and directed testing, often
fail to achieve sufficient coverage, leaving critical bugs
undetected. While fuzzing is widely used in software
testing to explore execution states systematically, its
application to hardware verification remains limited by
inefficiencies in seed selection and mutation strategies.

In this work, we present an automated verification
framework that augments existing DV methodolo-
gies by integrating two complementary techniques:
DiffTest, a co-simulation framework that systemati-
cally refines the reference model (REF) using the Diff-
Rule-Based Agile Verification (DRAV) methodology,
and XFUZZ, a coverage-guided hardware fuzzer that
leverages footprint memory-based mutations along
with the open-source LibAFL engine. This approach
enables broader test-case generation and systematic ex-
ecution path exploration without requiring additional
manual intervention.

Experimental evaluation on open-source RISC-V
processors demonstrates the efficacy of this approach.
Using SPEC CPU2006 benchmarks as seeds, XFUZZ
achieves 95.3% total coverage in less than 10
hours, significantly improving state space exploration.
Additionally, in terms of bug detection, our framework
uncovers four long-standing functional bugs in
two widely used RISC-V CPUs (Rocket Chip and
Spike), with one persisting for nearly 10 years, while
also identifying functional issues in XiangShan. These
results validate the effectiveness of our framework in
improving the efficiency and completeness of functional
verification for modern RISC-V processors.

Figure 1: System overview of DiffTest and XFUZZ.

Methodologies

DiffTest and XFUZZ are the default co-simulation and
fuzzing frameworks for the open-source XiangShan
project. In 2024, they helped identify 102 potential
bugs through over 1700 hours of nightly regression
testing. By integrating systematic co-simulation with
coverage-guided fuzzing, our framework enhances veri-
fication completeness while minimizing manual effort.
This section details our approach.

Figure 1 presents an overview of our verification
framework. DiffTest performs co-simulation between
the design under test (DUT) and the reference model
(REF), identifying execution discrepancies in real time.
XFUZZ introduces footprint memory-based fuzzing to
systematically mutate test inputs, guided by structural
and functional coverage feedback. Together, these com-
ponents automate verification, improve test efficiency,
and uncover hard-to-detect processor bugs.

DiffTest: A Systematic Co-Simulation
Framework

DRAV Method: DiffTest employs the Diff-Rule-
Based Agile Verification (DRAV) method to systemat-
ically handle non-deterministic behaviors in RISC-V
processors. Traditional co-simulation often encoun-
ters false positives due to permissible variations in
execution order and microarchitectural optimizations.
DRAV dynamically refines the reference model (REF)

RISC-V Summit Europe, Paris, 12-15th May 2025 1



using runtime execution feedback from the DUT, en-
abling precise identification of actual design discrep-
ancies rather than expected variations.

Information Probes: To enable efficient and struc-
tured verification, DiffTest integrates standardized in-
formation probes that extract critical execution data
from the DUT. These probes serve as a bridge between
low-level HDL implementations and high-level HCL de-
signs, ensuring consistency across different verification
environments. By providing well-structured observa-
tion points, they allow DiffTest to capture deviations
in architectural states, register updates, and memory
interactions.

Standard Co-Simulation Interfaces: Leveraging
DRAV and information probes, DiffTest establishes a
uniform set of APIs for co-simulation, facilitating inter-
operability between diverse RISC-V implementations
and simulation backends such as Verilator, VCS, and
Palladium. These standardized interfaces simplify the
process of integrating new DUTs and REFs, reducing
the verification overhead and improving scalability.

XFUZZ: Coverage-Guided Hardware
Fuzzing

Footprint Memory-Based Fuzzing: Traditional
CPU fuzzers often rely on linear memory representa-
tions that include irrelevant or unused data, limiting
mutation efficiency. XFUZZ introduces footprint mem-
ory, which captures only the memory regions actively
accessed during execution. By focusing on execution-
relevant bytes, footprint memory enhances mutation
effectiveness, ensuring that generated test cases have
a higher probability of reaching unexplored execution
states.

LibAFL Integration: To leverage state-of-the-
art software fuzzing methodologies, XFUZZ reuses
the open-source LibAFL engine, a widely adopted
modular fuzzing framework. This integration enables
XFUZZ to inherit robust coverage feedback mecha-
nisms and advanced mutation strategies, benefiting
from community-driven enhancements and ongoing
performance optimizations.

Evaluation

We assess the effectiveness of DiffTest and XFUZZ by
evaluating co-simulation interfaces, functional cover-
age, and bug detection.

Standardized DiffTest Interfaces

DiffTest provides a unified co-simulation framework for
verifying RISC-V processors. It enables dynamic REF
adaptation, structured execution data extraction, and

standardized APIs across diverse simulation platforms,
ensuring efficient and scalable verification.

While DiffTest offers off-the-shelf support for DUTs
such as Rocket, XiangShan, and NutShell and REFs
such as Spike and NEMU, its design is not limited
to these. As a framework, it is theoretically compati-
ble with any RISC-V DUT and can be easily ported
to new designs. Additionally, it supports multiple
simulation platforms, including Verilator, VCS, Palla-
dium, and FPGAs, providing flexibility across different
verification environments.

Coverage Improvement with XFUZZ

We evaluate XFUZZ’s impact on functional cover-
age using real-world SPEC CPU2006 benchmarks as
fuzzing seeds. Unlike traditional CPU fuzzers that rely
on handcrafted instruction sequences or synthetic test
cases, XFUZZ benefits from footprint memory to focus
mutations on execution-relevant memory regions. Ex-
perimental results show that XFUZZ achieves 95.3%
total coverage in less than 10 hours, signifi-
cantly outperforming prior formal-assisted fuzzing ap-
proaches. The improvement is attributed to: a) foot-
print memory’s ability to prioritize execution-relevant
data, eliminating redundant mutations; b) LibAFL’s
adaptive mutation scheduling, optimizing test input
prioritization; c) continuous feedback from DiffTest,
refining seed selection dynamically.

Bug Detection Efficiency

XFUZZ’s integration with DiffTest significantly en-
hances bug detection. During extensive testing, our
framework uncovered four long-standing func-
tional bugs in widely used RISC-V processors, in-
cluding Rocket Chip and Spike—the oldest persisting
for nearly 10 years. Additionally, in large-scale regres-
sion testing on XiangShan, XFUZZ revealed several
functional issues, demonstrating its ability to detect
complex processor bugs.

Conclusions

We present an automated verification framework for
RISC-V processors that integrates co-simulation and
fuzzing to enhance functional verification. DiffTest
enables precise discrepancy detection, while XFUZZ
improves test generation and execution path explo-
ration. Together, they automate verification, reduce
manual effort, and uncover subtle bugs missed by
traditional methods. As open-source RISC-V verifica-
tion tools, DiffTest and XFUZZ welcome contributions
from both the research and industrial communities to
further advance RISC-V processor validation.

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Introduction
	Methodologies
	DiffTest: A Systematic Co-Simulation Framework
	XFUZZ: Coverage-Guided Hardware Fuzzing

	Evaluation
	Standardized DiffTest Interfaces
	Coverage Improvement with XFUZZ
	Bug Detection Efficiency

	Conclusions

