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Abstract 

This paper describes a technology that brings together three key elements of reconfigurable hardware (FPGAs) 
prototyping, namely, Docker containers, RISC-V architectures, and runtime (dynamic) partial reconfiguration. The work 
envisaged serves the purpose of further expanding FPGA capabilities by allowing these processing platforms to support 
state-of-the-art development of prototypes with RISC-V soft-cores at their centre. The RISC-V processor features an 
Operating System (OS) that fully supports the execution of HW-extended Docker containers, which in turn contain all the 
necessary libraries, software, firmware and bitstreams for the implementation and utilisation of accelerator cores/modules 
within the reconfigurable fabric of the FPGA. Hence, different Docker containers, representing separate services and 
clients, will be able to deploy on-demand part of their functionality directly into the FPGA fabric benefiting from the 
parallel execution capabilities that this type of technology has to offer while the overall system will be based on a soft 
instance of a RISC-V processor core. 

Introduction 
Modern FPGAs, along with their variations such as the 

Multi-Processor System-on-Chip (MPSoC) [1] are at the 
forefront of technological advancements. They are 
currently used in various solutions, e.g., IoT, Supply 
Chains, Industry, Telecoms, High Performance Computing 
(HPC), and Security [2] both in the form of prototype 
development as well as part of system deployment. Their 
main advantages are found in i) that they can offer highly 
parallel architectures at various levels of granularity, 
thereby accelerating computationally heavy algorithms and 
tasks, ii) extreme versatility and, iii) low power 
consumption. Moreover, the ability to re-visit and update 
an existing implementation in-field, makes them an 
attractive solution since active designs can be updated into 
newer and more robust versions of their original 
implementations without the need to replace the actual  
host hardware platform. 

Consequently, bridging container-like technology, which 
offers OS virtualisation, on the hardware level by utilising 
FPGAs, results in a highly attractive development 
environments for users that want to benefit from 
FPGA-based acceleration on compute-intensive tasks while 
making the shared demand for access to the FPGA fabric a 
more manageable and secure task. 

Concept & Implementation 
The concept of the HW-extended container is based upon 

the fundamental FPGA fabric split into static and dynamic 
designs, i.e. an architecture that is comprised of a collection 
of permanent modules (static) that form the core system 
functionality, and a collection of temporary modules that 
are replaceable on-demand and correspond to different 
services (dynamic). 

Commonly, a realisation of this split is performed using 
devices such as MPSoC chips where the static portion of 

the design is “hard", i.e. it has been fabricated this way and 
cannot, therefore, be modified. Hence, only the dynamic 
section of the chip is reconfigurable and can be re-designed 
at will. Typically, under these schemes, the static section 
includes ARM processor cores along with a number of 
additional functional blocks, e.g. a management unit, 
on-chip memory, GPU and I/O. Due to the vendor support 
that usually accompanies these devices, it is an easier task 
for a designer to select a suitable OS that includes all 
necessary libraries and drivers and deploy it to the static 
processor(s). This allows for a greater focus on the harder 
task at hand, i.e. the development of (optimised) custom 
hardware modules, which represent the functionality 
required by a user, as well as the demarcation of suitable 
Programmable Region (PR) [3] placeholders that are meant 
to host said custom modules introduced by the various 
system users. Nevertheless, the architecture that exists on 
the static side is fixed and remains beyond the control of 
the developer, in addition, the majority of the "hard" 
functional blocks are most of the time redundant for a given 
application. 

Hence, this work replaces the static portion of the system 
with a RISC-V processing core [4] along with necessary 
blocks for the system’s operation. The benefits of this 
approach are twofold. First, it offers an FPGA-based 
prototype development platform that has a RISC-V 
processor at its core, free from proprietary architecture 
dependencies and practical considering the popularity of 
RISC-V in recent years [5]. The second has to do with the 
ability to modify the static part in accordance with further 
developments by the RISC-V foundation [6] and affiliated 
community so that the system processor is always 
up-to-date. That is because the static portion of the design 
is also implemented on reconfigurable hardware and it can 
be updated if so desired.The overall architecture of the 
concept is shown in Figure-1 and presents the essential 
prototype building blocks. First, the FPGA fabric is divided 
into a static and a dynamic portion. The static side is also 
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hosted on reconfigurable fabric and can, therefore, be 
modified according to the developers' needs. Overall, it 
contains a linux capable RISC-V core, which the users can 
utilise to use part of the dynamic reconfigurable fabric to 
implement and accelerate parts of their process by 
exploiting the parallelism capabilities. The dynamic section 
is designed to offer a number of Programmable Regions 
(PRs) able to host a dedicated AXI connected hardware 
module that is user/Docker image-specific. The 
corresponding PR region will become available when the 
task is completed. 

The prototype’s static side, consists of a multi-core 
RISC-V processor along with utilitarian functional blocks, 
such as, i) I/O responsible for interfacing the RISC-V with 
the development board’s various peripherals, ii) DDR 
responsible for interfacing with the on-board memory, and, 
iii) DMA responsible for supporting direct access to the 
DDR memory. All these blocks, along with the RISC-V 
and the different PR regions, are connected to a crossbar 
that supports all-to-all connection so, for instance, a custom 
PR module can talk to the RISC-V and/or read/write data 
directly from/to memory. Finally, the static side will also 
contain a configuration block, e.g. ICAP, responsible for 
transferring the partial bitstream to the dynamic side of the 
FPGA.

 

System users can request access to the service through a 
dedicated utility that reports the availability of 
reconfigurable regions. Subsequently, the host’s OS will 
reply back with i) a Dockerfile template that the client has 
to adapt by performing minor modifications in order to 
make it user-specific and ii) the currently available 
programmable regions on the FPGA. The client’s 
Dockerfile will be based on a Docker image created by the 

system, containing all the needed tools in order to perform 
the reconfiguration of a specific region. The information 
that the client will have to provide are the bitstream file and 
the target PR region. 

This will produce a client-specific Docker Image that 
utilises the existing tools in the system’s Docker Base 
Image in order to deploy a new client-specific Docker 
container. The client’s bitstream will be programmed 
through the FPGA vendor’s method in the specific region 
that was available and chosen by the client. After this 
procedure, the client will have access to the container by 
the default Docker commands. 

Conclusions & Future Work 
This short paper introduces an attractive concept that 

combines a number of key technologies in modern 
computer technology. These are Docker containers, 
RISC-V processors and FPGA partial reconfiguration. The 
idea attempts to enable a better utilisation of FPGA devices 
in the context of services and research by offering their 
resources to clients that wish to combine a RISC-V based 
management and execution system of processes and tasks 
with reconfigurable hardware that can offer computation 
speedups in addition to low-power execution. Hence, users 
are offered the opportunity to deploy HW-extended Docker 
containers on a soft RISC-V processor that aside from 
software execution can also introduce hardware modules in 
pre-assigned programmable regions within the 
reconfigurable fabric of the FPGA. During the next 
implementation steps we aim to evaluate the overall 
performance of the system by deploying cryptographic and 
AI accelerators. 
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