

HW-extended Containers on FPGA-based RISC-V SoC
Konstantinos Amplianitis1, Katerina Tsimpirdoni1, Andreas Brokalakis1, George Christou1,

Konstantinos Georgopoulos,1 and Sotiris Ioannidis1
1School of Electrical and Computer Engineering, Technical University of Crete

Abstract

This paper describes a technology that brings together three key elements of reconfigurable hardware (FPGAs)
prototyping, namely, Docker containers, RISC-V architectures, and runtime (dynamic) partial reconfiguration. The work
envisaged serves the purpose of further expanding FPGA capabilities by allowing these processing platforms to support
state-of-the-art development of prototypes with RISC-V soft-cores at their centre. The RISC-V processor features an
Operating System (OS) that fully supports the execution of HW-extended Docker containers, which in turn contain all the
necessary libraries, software, firmware and bitstreams for the implementation and utilisation of accelerator cores/modules
within the reconfigurable fabric of the FPGA. Hence, different Docker containers, representing separate services and
clients, will be able to deploy on-demand part of their functionality directly into the FPGA fabric benefiting from the
parallel execution capabilities that this type of technology has to offer while the overall system will be based on a soft
instance of a RISC-V processor core.

Introduction
Modern FPGAs, along with their variations such as the

Multi-Processor System-on-Chip (MPSoC) [1] are at the
forefront of technological advancements. They are
currently used in various solutions, e.g., IoT, Supply
Chains, Industry, Telecoms, High Performance Computing
(HPC), and Security [2] both in the form of prototype
development as well as part of system deployment. Their
main advantages are found in i) that they can offer highly
parallel architectures at various levels of granularity,
thereby accelerating computationally heavy algorithms and
tasks, ii) extreme versatility and, iii) low power
consumption. Moreover, the ability to re-visit and update
an existing implementation in-field, makes them an
attractive solution since active designs can be updated into
newer and more robust versions of their original
implementations without the need to replace the actual
host hardware platform.

Consequently, bridging container-like technology, which
offers OS virtualisation, on the hardware level by utilising
FPGAs, results in a highly attractive development
environments for users that want to benefit from
FPGA-based acceleration on compute-intensive tasks while
making the shared demand for access to the FPGA fabric a
more manageable and secure task.

Concept & Implementation
The concept of the HW-extended container is based upon

the fundamental FPGA fabric split into static and dynamic
designs, i.e. an architecture that is comprised of a collection
of permanent modules (static) that form the core system
functionality, and a collection of temporary modules that
are replaceable on-demand and correspond to different
services (dynamic).

Commonly, a realisation of this split is performed using
devices such as MPSoC chips where the static portion of

the design is “hard", i.e. it has been fabricated this way and
cannot, therefore, be modified. Hence, only the dynamic
section of the chip is reconfigurable and can be re-designed
at will. Typically, under these schemes, the static section
includes ARM processor cores along with a number of
additional functional blocks, e.g. a management unit,
on-chip memory, GPU and I/O. Due to the vendor support
that usually accompanies these devices, it is an easier task
for a designer to select a suitable OS that includes all
necessary libraries and drivers and deploy it to the static
processor(s). This allows for a greater focus on the harder
task at hand, i.e. the development of (optimised) custom
hardware modules, which represent the functionality
required by a user, as well as the demarcation of suitable
Programmable Region (PR) [3] placeholders that are meant
to host said custom modules introduced by the various
system users. Nevertheless, the architecture that exists on
the static side is fixed and remains beyond the control of
the developer, in addition, the majority of the "hard"
functional blocks are most of the time redundant for a given
application.

Hence, this work replaces the static portion of the system
with a RISC-V processing core [4] along with necessary
blocks for the system’s operation. The benefits of this
approach are twofold. First, it offers an FPGA-based
prototype development platform that has a RISC-V
processor at its core, free from proprietary architecture
dependencies and practical considering the popularity of
RISC-V in recent years [5]. The second has to do with the
ability to modify the static part in accordance with further
developments by the RISC-V foundation [6] and affiliated
community so that the system processor is always
up-to-date. That is because the static portion of the design
is also implemented on reconfigurable hardware and it can
be updated if so desired.The overall architecture of the
concept is shown in Figure-1 and presents the essential
prototype building blocks. First, the FPGA fabric is divided
into a static and a dynamic portion. The static side is also

RISC-V Summit Europe, Paris, 12-15th May 2025 1

hosted on reconfigurable fabric and can, therefore, be
modified according to the developers' needs. Overall, it
contains a linux capable RISC-V core, which the users can
utilise to use part of the dynamic reconfigurable fabric to
implement and accelerate parts of their process by
exploiting the parallelism capabilities. The dynamic section
is designed to offer a number of Programmable Regions
(PRs) able to host a dedicated AXI connected hardware
module that is user/Docker image-specific. The
corresponding PR region will become available when the
task is completed.

The prototype’s static side, consists of a multi-core
RISC-V processor along with utilitarian functional blocks,
such as, i) I/O responsible for interfacing the RISC-V with
the development board’s various peripherals, ii) DDR
responsible for interfacing with the on-board memory, and,
iii) DMA responsible for supporting direct access to the
DDR memory. All these blocks, along with the RISC-V
and the different PR regions, are connected to a crossbar
that supports all-to-all connection so, for instance, a custom
PR module can talk to the RISC-V and/or read/write data
directly from/to memory. Finally, the static side will also
contain a configuration block, e.g. ICAP, responsible for
transferring the partial bitstream to the dynamic side of the
FPGA.

System users can request access to the service through a
dedicated utility that reports the availability of
reconfigurable regions. Subsequently, the host’s OS will
reply back with i) a Dockerfile template that the client has
to adapt by performing minor modifications in order to
make it user-specific and ii) the currently available
programmable regions on the FPGA. The client’s
Dockerfile will be based on a Docker image created by the

system, containing all the needed tools in order to perform
the reconfiguration of a specific region. The information
that the client will have to provide are the bitstream file and
the target PR region.

This will produce a client-specific Docker Image that
utilises the existing tools in the system’s Docker Base
Image in order to deploy a new client-specific Docker
container. The client’s bitstream will be programmed
through the FPGA vendor’s method in the specific region
that was available and chosen by the client. After this
procedure, the client will have access to the container by
the default Docker commands.

Conclusions & Future Work
This short paper introduces an attractive concept that

combines a number of key technologies in modern
computer technology. These are Docker containers,
RISC-V processors and FPGA partial reconfiguration. The
idea attempts to enable a better utilisation of FPGA devices
in the context of services and research by offering their
resources to clients that wish to combine a RISC-V based
management and execution system of processes and tasks
with reconfigurable hardware that can offer computation
speedups in addition to low-power execution. Hence, users
are offered the opportunity to deploy HW-extended Docker
containers on a soft RISC-V processor that aside from
software execution can also introduce hardware modules in
pre-assigned programmable regions within the
reconfigurable fabric of the FPGA. During the next
implementation steps we aim to evaluate the overall
performance of the system by deploying cryptographic and
AI accelerators.

References
[1] “Description of xilinx us+ multi-processor

system-on-chip,”https://www.xilinx.com/products/silicon-d
evices/soc/zynq-ultrascale-mpsoc.html

[2] O. Mencer, D. Allison, E. Blatt, M. Cummings, M. J.
Flynn, J. Harris, C. Hewitt, Q. Jacobson, M. Lavasani, M.
Moazami, H. Murray, M. Nikravesh, A. Nowatzyk, M.
Shand, and S. Shirazi, “The history, status, and future of
fpgas: Hitting a nerve with field-programmable gate
arrays,” Queue, vol. 18, no. 3, p. 71–82, jul 2020. [Online].
Available: https://doi.org/10.1145/3411757.3411759.

[3] “Dynamic function exchange,”
https://www.xilinx.com/support/documentation-navigation/
design-hubs/dh0017-vivado-partial-reconfiguration-hub.ht
ml, accessed: 07-02-2025.

[4] “Out of order risc-v processor based on rocketchip,”
https://github.com/eugene-tarassov/vivado-risc-v, accessed:
07-02-2025.

[5] “Risc-v pushes into the mainstream,”
https://semiengineering.com/risc-v-pushes-into-the-mainstr
eam/, accessed: 07-02-2025.

[6] “Risc-v foundation,” https://riscv.org/, accessed:
07-02-2025.

2 RISC-V Summit Europe, Paris, 12-15 May 2025

	Abstract
	Introduction
	Concept & Implementation
	Conclusions & Future Work
	References

