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Abstract

We introduce HWFuzz, a high-performance fuzzing-based verification framework that automatically detects
potential vulnerabilities in RISC-V processors. The framework tackles the challenge of lengthy verification
cycles required to achieve hard-to-reach coverage points, particularly in complex processors. Our solution
enhances verification efficiency through two key components. First, we implement a hardware fuzzer that
rapidly generates large-scale RISC-V instruction sequences. Instead of simply using random instructions, the
fuzzing-based instructions are specifically designed to achieve better coverage while exploring hard-to-reach states
during RISC-V processor verification. Second, we develop an end-to-end verification framework that iteratively
generates coverage-directed stimuli using the hardware fuzzer, applies them to the design-under-test (DUT),
collects coverage data, and identifies uncovered states for further fuzzing iterations. Through FPGA acceleration,
our framework achieves 2.03× speedup against conventional software approaches.

Introduction
Fuzzing has traditionally served as software testing
tools [1, 2, 3] that identify security vulnerabilities
and bugs by generating large volumes of random and
often invalid input data to trigger unexpected behav-
ior. Recently, this approach has been adapted to
verify hardware circuits [4], with modifications to en-
hance verification effectiveness. For example, several
fuzzing methods have emerged specifically for proces-
sor verification. To our knowledge, RFuzz[5] was the
first tool to apply fuzzing methods to RTL functional
verification, but only limited to small-scale design.
DifuzzRTL[6] brought improved fuzzing performance
and more efficient coverage exploration, introducing
a cycle-accurate, scalable coverage metric designed
specifically for RTL design. Other research such as
TheHuzz [7] and Cascade [8] have since developed in-
novative methods to optimize instruction generation
and enhance overall efficiency.

However, existing hardware fuzzing techniques still
require the fuzzer to run in software, creating a per-
formance bottleneck that results in slower stimulus
generation and a longer verification period.

To address the above issue, we propose HWFuzz,
an FPGA-accelerated fuzzing framework for RISC-V
processor verification. Our work makes three novel
contributions: First, we developed a synthesizable and
highly configurable hardware fuzzer IP that enables
rapid generation of RISC-V coverage-directed instruc-
tion stimuli. Second, instead of simply using ran-
dom instructions, we enhanced the fuzzing algorithm
to improve stimulus quality, maximizing executable
instructions and achieving better coverage while ex-
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ploring corner cases. Third, we fully automated the
hardware verification process. The system iteratively
collects coverage data from the DUT to enhance stim-
ulus quality while automatically detecting potential
vulnerabilities by comparing the execution results from
both the DUT and its software reference model based
on the ENCORE framework with FPGA acceleration.

The HWFuzz Framework
Overview The overall workflow of the HWFuzz
framework is shown in Figure 1. We take advantage
of the Zynq UltraScale+ architecture that consists of
Programmable Logic (PL) and Processing System (PS)
on the same FPGA to implement and accelerate the
overall verification process. Specifically, PL is used to
deploy the hardware fuzzer IP and the RISC-V pro-
cessor DUT. The corresponding software model of the
DUT is running simultaneously on the PS. We reuse
the differential checking capability from ENCORE
to automatically compare the execution results from
DUT and the reference model dynamically.

HWFuzz can automatically instrument fine-grained
synthesizable coverpoints into the DUT during compi-
lation. This allows coverage information to be collected
directly from the FPGA during runtime, which feeds
back to the fuzzer to improve stimulus generation.

Coverage-Directed Generation The hardware
fuzzer IP operates in two modes: random and mu-
tation. The random mode selects instructions purely
at random, while the mutation mode modifies the
previously generated stimuli in the random mode by
adjusting their operands and context. During each
fuzzing iteration, the system stores the generated stim-
uli and their corresponding DUT coverage data col-
lected in the hardware in a corpus. The mutation
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Figure 1: The HWFuzz architecture.

mode then selectively modifies the most promising
stimuli—those with the highest probability of maxi-
mizing coverage. This targeted approach increases the
chances of generating instructions that expand DUT
coverage and enhance verification effectiveness.
Stimuli Packing The fuzzer generates two types of
stimuli: instructions and data. Both are stored in a
designated DDR region that serves as the testing envi-
ronment for DUT verification. While data generation
follows a simple random approach—creating random
data values that Load/Store instructions can interact
with—instruction generation involves a more sophisti-
cated, multi-stage process, as shown in Figure 1.

In the initial stage, Random and Mutation gener-
ate a set of instructions with opcodes only. Next,
the system automatically creates a context for these
instructions by adding address-related information.
Meanwhile, the instruction injector works in parallel
to insert auxiliary instructions that provide register
values, improving verification effectiveness. Finally, a
processing unit assigns operands to each instruction
based on its generated context.
Stimuli Constraints Beyond performance issues,
previous fuzzing methods face another key limitation
that many generated instructions cannot be fully exe-
cuted. Control flow instructions comprise a significant
portion of generated instructions, particularly when in-
struction set extensions are not fully enabled. Without
proper jump range restrictions, many of these instruc-
tions miss execution opportunities, as Figure 2 illus-
trates. An unrestricted jump range fails to improve
coverage. While Cascade addressed this through a
software-based approach of reconstructing basic blocks,
we opted for implementing hardware constraints on
control flow instruction jump ranges. This method
significantly increases the proportion of instructions
that can be executed.

Evaluation and Results
We implemented HWFuzz on a Fidus Sidewinder board
equipped with an AMD Zynq UltraScale+ XCZU19EG
FPGA. We used Rocket Core—a 64-bit RISC-V single-
issue processor as the DUT.

We configure HWFuzz to support RV64I and RV64G
extensions, whereas the software fuzzer supports

Figure 2: The comparison of instruction counts for three
instruction types

RV64G ISA. As seen in Figure 3, HWFuzz with G
extension achieves 2.03× coverage growth over soft-
ware fuzzer after 100 fuzzing iterations, while also
demonstrating a more significant increase in coverage
over time. Meanwhile, HWFuzz with only the I exten-
sion reaches more than half the coverage points of the
software fuzzer with the G extension.

Figure 3: Coverage comparison

Table 1 shows the resource utilization. Compared
to an instrumented RISC-V core, the fuzzer IP incurs
a small area overhead.

Table 1: Resource Usages

Resource Fuzzer Infra DUT

LUTs 68377 8217 209865
(13.08%) (1.57%) (40.15%)

Block RAMs 192.5 325 20
(19.56%) (33.03%) (2.03%)

Registers 92407 12749 118683
(8.84%) (1.22%) (11.35%)
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