
Vision & Value

1 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences 

2 University of Chinese Academy of Sciences

3 University of Cambridge

Yang Zhong1,2, Haoran Wu3*, Yungang Bao1,2 and Kan Shi1,2

HWFuzz: An FPGA-Accelerated FuzzingFramework for 
Efficient RISC-V Verification

Evaluation

• To address the limitations of existing DV 

frameworks, hardware fuzzing has 

emerged as a promising approach, 

inspired by its widespread use in the 

software testing domain. 

• Recent advancements in hardware 

fuzzing have led to the discovery of a 

significant number of bugs in open-

source RISC-V processor cores, such as 

Rocket Core, BOOM, and CVA6, further 

demonstrating its practical effectiveness 

in real-world scenarios.

Previous methods in Hardware Fuzzing

Software-based

• Test stimulus generation is slow due to 

limited software performance.

• DUT execution becomes a bottleneck 

because of time-consuming simulations.

Offload DUT to FPGA

• Significantly improves DUT execution 

speed.

• New bottlenecks emerge:Test stimulus 

generation still remains slow . 

Communication latency between the host 

and the FPGA limits overall fuzzing 

throughput.

Our solution：

• Developed a synthesizable and highly 

configurable hardware fuzzer IP.

• Implements a fully automated hardware 

fuzzing-verification loop entirely on FPGA 

• Detects potential vulnerabilities by comparing 

DUT execution with a software reference 

model.

Coverage-Directed Generation

• Two Fuzzing Modes:

• Random Mode: Generates 

instructions purely at random.

• Mutation Mode: Adjusts operands 

and context of previously 

generated stimuli.

• Corpus-Guided Mutation:

• Stores stimuli and corresponding 

DUT coverage in a corpus.

• Selectively mutates high-

coverage stimuli to maximize 

DUT coverage and improve 

verification efficiency.

Stimuli Constraints

• Implement hardware-level constraints on 

control-flow instruction jump ranges.

The overall architecture

Stimuli Packing.

• Generates both instructions and data, 

stored in DDR.

• Random data values are created to 

support Load/Store instructions, and 

ensuring memory-access operations 

have valid operands.

• A multi-stage pipeline refines raw 

opcodes into executable instructions by 

adding context, helper instructions, and 

operands.

Figure 3: Coverage comparison

Platform: Fidus Sidewinder board

• with a Xilinx Zynq UltraScale+ XCZU19EG 

FPGA and two 16GB DDR4 memories.

Figure 1: Comparison between the previous

Hardware Fuzzing approaches and the proposed approach

Figure 2: The overall architecture of our proposed method.

• Constraints significantly increase the 

proportion of generated instructions that 

can be executed, enhancing overall 

coverage.


