
UnityChip Verification: Scale Out Hardware Verification with 
Software Developers

Abstract
Hardware verification represents a major portion of chip develop-
ment. While prior work focuses on accelerating verification (Scale-
Up), leveraging software developers participation (Scale-Out) re-
mains key. Existing tools face three barriers when verifying the
complex hardware designs: (1) timing alignment between software-
native event-driven programming and hardware execution par-
adigm, (2) reusing hardware verification IPs (VIPs) in software
environments, and (3) performance-debugging trade-offs in open-
source simulators.

This paper presents UnityChip Verification, a multi-language
hardware verification platform with software-native optimization
designed for software developers, enabling software developers to
adopt event-driven programming or synchronous methods while
reusing hardware VIPs. Key innovations include: (1) a software-
native clock scheduler that aligns software events with hardware
timing; (2) cross-environment transaction/event mapping tech-
niques that facilitate VIP reuse; and (3) non-intrusive simulator
enhancement that balances performance, debuggability, and scala-
bility. Evaluated on the XiangShan and Rocket-Chip RISC-V pro-
cessor, our framework achieves up to 20× runtime speedup and
76% memory savings over Cocotb, offers zero-overhead support
for C++, Python, and other languages, and reduces code by 12%
and accelerates speed by 16.6% while reusing VIPs.

Keywords
Hardware Verification, Software Testing, Open-Source Hardware

1 Introduction
Hardware verification plays a pivotal role in chip development,
taking approximately 70% of the total project duration [38]. In
particular domains, such as CPU design, the ratio of verification
engineers to design engineers can even reach 5:1. The high demand
for verification has driven research aimed at improving efficiency,
making it a key topic in current studies.

In the past, the industry mainly focused on speeding up the veri-
fication process to improve efficiency (Scale Up). From enhancing
reusability with Universal Verification Methodology (UVM) [17] to
accelerating the development of reference models with SystemC [1],
such work has improved the development efficiency of hardware
verification engineers. However, there is more than one way to
boost efficiency. Lowering the barriers to enable more people to
participate in hardware verification with ease is also a promis-
ing path to improve efficiency (Scale-Out). Tools like Cocotb [33],
PyMTL [24], Fault [41], and ChiselTest [28] have attempted to lever-
age high-level programming languages, such as Chisel and Python,

to improve verification productivity. They have also attracted soft-
ware developers to step into the hardware verification area [15].

However, software developers still face several challenges when
leveraging these tools to build their verification environments from
the ground up.

❶ Paradigm mismatch. Both hardware design simulation and
transaction-level verification [1, 2] are event-driven. However, cur-
rent tools like PyMTL and ChiselTest do not provide event support
for verification. Although Cocotb implements a simple event sched-
uler using simulator callbacks, it risks reading erroneous data [16]
by awakening software programs before hardware stabilization,
which is due to the delta cycles [11] characteristic of simulator iter-
ation convergence. Therefore, there is a need for software-native
support for Event-Driven Programming (EDP) to bridge the mis-
match and assist software developers in handling hardware ports
with complex timing at appropriate moments.

❷ Legacy IPs compatibility. Software languages cannot handle
the hardware event and transaction transmission. However, most
industry-proven verification IPs (VIP) are fundamentally based on
event and transaction drivers, leading to inherent technical incom-
patibility. For instance, although PyUVM [31] is a Python-level reim-
plementation of UVM, it cannot support traditional SystemVerilog
UVM-based VIPs. Developers ultimately face a dilemma between
redeveloping reference models or manually building complex com-
munication relays, which is a huge burden for software developers.

❸ Performance or debuggability. Open-source hardware tool
chains trade off performance for functionality in their design. For
example, even the state-of-the-art simulator Verilator [40] faces
conflicts between simulator optimization and Verilog Procedural
Interface (VPI). Enabling VPI’s internal signal debugging capability
results in at least a 70% performance loss and doubles the program
size. Furthermore, some simulators [7, 9, 43, 48] currently do not
support VPI Force/Release like functionality for locking hardware
states, which additionally limits various debugging methods.

To address these issues, we propose UnityChip Verification
(UCV), a software-native, multi-language hardware verification plat-
form designed to enhance efficiency and accessibility in chip verifi-
cation workflows. It enables developers to write cycle-accurate ver-
ification cases using mainstream software languages (e.g., Python,
Java, C++) through synchronous or event-driven programming
modes, while seamlessly integrating hardware events and transaction-
level communication into software environments. Additionally, it
implements a low-overhead simulator enhancement layer that adds
internal signal debugging capabilities without sacrificing perfor-
mance or modifying existing simulator code. Specifically, we make
three technical contributions to achieve these goals.

➀ Software-native timing and interaction. To support EDP
in software-based hardware verification, we need to synchronize
between software event schedulers and hardware cycles. While
simulators employ virtual time to sequence hardware events during

1



emulation, software events unmanaged by simulators cannot be 
properly ordered. To resolve this, we designed a clock type that 
implements event scheduling through software-native asynchro-
nous libraries while recording simulation time in software for event 
ordering. During runtime, this clock controls simulator execution 
until reaching target timestamps and processes software events 
after hardware convergence.

➁ Transparent hardware-software mapping. Reusing exist-
ing hardware VIPs requires cross-environment sharing of exclusive
resources. Event handling and transaction transfer tasks require
exclusive access, preventing concurrent processing by software
and hardware. This conflict may induce resource contention and
potential deadlocks. UCV introduces a registry-based synchroniza-
tion mechanism that constructs mirrored objects across different
environments and synchronizes states during switch operations.

➂ Software-defined simulator enhancement. Modifying the
simulator itself or its generated artifacts entails prohibitive devel-
opment and maintenance costs. To circumvent this, UCV adopts
external software augmentation modules for feature integration.
Specifically, UCV implements a data port type in software that di-
rectly accesses simulator memory, while abstracting VPI-related
logic into reusable software code to enable on-demand loading.

We evaluated the effectiveness of UCV on open-source proces-
sors XiangShan [45] and RocketChip [6]. The results show that
EDP is the preferred method for software developers during verifi-
cation, with acceptable overhead across different languages. While
preserving internal signal debugging capabilities, our approach
achieves up to 20× speedup and 76% memory savings compared to
Cocotb and similar solutions. Furthermore, when reusing VIPs, it
demonstrates 16.6% higher throughput and 12% reduction in lines
of code (LOCs) compared to manual relay methods. Most impor-
tantly, unlike Cocotb’s compromised compatibility in event-driven
scenarios, UCV maintains full compatibility with existing software
ecosystems.

Our contributions can be summarized into four aspects:

• We developed a software-native hardware verification plat-
form that integrates software developers using different
languages, enhancing development efficiency and execu-
tion speed through optimized software components.

• We designed a software asynchronous runtime-based hard-
ware clock to assist event-driven programming (EDP) veri-
fication in software environments.

• We proposed a cross-environment mapping method for
events and transactions, leveraging existing industry-level
VIPs and auxiliary tools to enable complex, real-world veri-
fication in software.

• We constructed an on-demand dynamic loading-based data
debugging method that enhances performance and scala-
bility while preserving simulator debuggability.

2




