
UnityChip Verification: Scaling Out Hardware Verification with
Software Testing Developers

Yunlong Xie, Zhicheng Yao, Sa Wang, Yungang Bao

Background Motivation

Challenges & Solutions

[2]: Life Post Moore’s Law: The New CAD Frontier, Prof. Mark Horowitz, Stanford University
[1]: 2022 Wilson Research Group Functional Verification Study. SIEMENS

Design engineers 
increase since 2007

50%
Verification engineers 

increase since 2007

146%

50%-60%
Median project 
time spent in 
verification

51%
Design engineer's 

time spent on design 
task

49%
Design engineer's time 

spent on verification 
task

Chip verification occupies a significant portion of project resources.

CHALLENGE 1:
Programming Paradigm Difference

CHALLENGE 2:
Hardware/Software Cooperation

Performance Debuggability Tradeoff

Hardware verification

CHALLENGE 3:
Software test

SOLUTION 1 : Multi-language Event-Driven Verification

SOLUTION 2 : Transaction & Event Synchronization

Results

It's time for open-source crowdsourced verification

SOLUTION 3 : Software-Defined Optimization

“Perhaps one of the biggest challenges today is to control cost 
and engineering headcount.”[1]

Utilize the Diverse Open-source Software 
to Enhance Hardware Ecosystem

Success Stories of 
Community-driven Software Test

Open-source Verification Tools 
are Now Available

Case Study

Fig 1. Event-Driven Performance

Fig 2. Performance with Debuggability

Open-source hardware tool chains 
trade off performance for functionality 
in their design. For example, even the 
state-of-the-art simulator Verilator 
faces conflicts between simulator 
optimization and Verilog Procedural 
Interface.

Inspired by the open-source hardware 
ecosystem and the benefits of software 
communities, we propose a multi-aspect 
optimization approach for software-based 
hardware verification, the UnityChip 
Verification platform. 

Evaluated on the XiangShan and Rocket-Chip 
RISC-V processor, our framework achieves up 
to 20× runtime speedup and 76% memory 
savings over Cocotb, offers zero-overhead 
support for C++, Python, and other languages, 
and reduces code by 12% and accelerates 
speed by 16.6% while reusing VIPs.

This platform establishes a hardware 
verification toolchain that enables software 
engineers to verify chips more efficiently.

• Software languages help, but the lower 
barrier is the key.

• Documentation matters.
• Participants’ interest and enthusiasm 

take precedence over technical 
expertise in verification results


