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Chip verification occupies a significant portion of project resources.
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Results

It's time for open-source crowdsourced verification

SOLUTION 3 : Software-Defined Optimization

“Perhaps one of the biggest challenges today is to control cost 
and engineering headcount.”[1]
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Success Stories of 
Community-driven Software Test
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Case Study

Fig 1. Event-Driven Performance
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Open-source hardware tool chains 
trade off performance for functionality 
in their design. For example, even the 
state-of-the-art simulator Verilator 
faces conflicts between simulator 
optimization and Verilog Procedural 
Interface.

Inspired by the open-source hardware 
ecosystem and the benefits of software 
communities, we propose a multi-aspect 
optimization approach for software-based 
hardware verification, the UnityChip 
Verification platform. 

Evaluated on the XiangShan and Rocket-Chip 
RISC-V processor, our framework achieves up 
to 20× runtime speedup and 76% memory 
savings over Cocotb, offers zero-overhead 
support for C++, Python, and other languages, 
and reduces code by 12% and accelerates 
speed by 16.6% while reusing VIPs.

This platform establishes a hardware 
verification toolchain that enables software 
engineers to verify chips more efficiently.

• Software languages help, but the lower 
barrier is the key.

• Documentation matters.
• Participants’ interest and enthusiasm 

take precedence over technical 
expertise in verification results


