

Centro de

Electrónica

Industrial

# Reconfigurable Processor-Centric Accelerator for Safety-Critical Applications

Luis Waucquez and Alfonso Rodríguez

**RISC-V Summit Europe 2025** 

luis.waucquez.jimenez@upm.es

In the context of safety-critical systems in harsh environments, this work proposes a flexible RISC-V-based accelerator platform supporting Single, DCLS, TCLS, and staggered DCLS modes. A lightweight fault injection campaign demonstrates its fault tolerance and adaptability to diverse application requirements.

### **Accelerator Island Features**

- CPU System: Multiple design options between CV32E20, CV32E40P and CV32E40PX.
- Separate instruction and data scratchpad memories.
  System bus: Based on the Open Bus Interface (OBI).

#### Safe Accelerator Platform





Fully Open-Source platform based on IPs collection from X-HEEP, OPEN HW and PULP-PLATFORM ecosystems.

RISC-V PILLP OPENHOUS SOR PROCESSOR IP W X-HEEP

## **OPERATIONAL MODES**

Single, TCLS, DCLS & DCLS with staggering.
 SW-Based recovery implementation.



# **SW Recovery TCLS**



SW Recovery ISR : Core context store (voted) & load operation.
 Core Context: Registers File & Control Status Registers.



A single error can be masked to prevent the recovery operation until another error.
 No need to restore stack context in TCLS configuration.



## **Experimental Results**

executed.

| Modes               | Entry Exit Recovery Store-Context |            |     |                   | Overhead |        |        | System                 | Modules                 | Resources |       |
|---------------------|-----------------------------------|------------|-----|-------------------|----------|--------|--------|------------------------|-------------------------|-----------|-------|
|                     |                                   |            |     | Base Bit-flip CMF |          | CMF    | System | wiodules               | LuTs                    | FFs       |       |
|                     |                                   |            |     |                   | Dase     | Du-mp  |        | SoC & Accelerator Bas  | eline                   | 35898     | 32760 |
| SINGLE              | _                                 | _          | _   | _                 | 0%       | _      | _      |                        | Accelerator Baseline    | 11049     | 5868  |
| TCLS                | 301                               | 54         | 180 | _                 | 0%       | 0.75%  | _      |                        | <b>Triple Core Unit</b> | 10218     | 5748  |
|                     | 001                               |            | 100 |                   | 070      | 0.1070 |        |                        | CV32E20 Core            | 3421      | 1916  |
| DCLS                | 280                               | 54         | 125 | 118               | 0%       | 3.78%  | -      | SoC & Safe Accelerator | ſ                       | 38068     | 33182 |
| DCLS <sub>n-1</sub> | 291                               | 72         | 179 | 170               | 11.69%   | 16.23% | 16.23% |                        | Safe Accelerator        | 13129     | 6291  |
|                     |                                   | 0 <b>r</b> | 210 | 200               | 22.0070  |        |        |                        | Safe CPU Wrapper        | 12347     | 6158  |
| $DULS_{n=2}$        | 2 303                             | 85         | 234 | 223               | 23.31%   | 29.45% | 29.45% | Overhead               |                         | 6.04%     | 1.28% |

Latencies observed in the different sections of the safety mechanism.
 Overhead estimation based on AES algorithm execution during simulation.
 Single Bit-Flip simulation & Common Mode Failures for Lockstep modes.

➢ FPGA resource utilization.

Execution interrupted when error is detected, recovery procedure is

System integration with X-HEEP platform (SoC).

This work has been supported by the Secretaría de Estado de Telecomunicaciones e Infraestructuras Digitales, Ministerio para la Transformación Digital y de la Función Pública, funded by NextGenerationEU, in the context of the Programme for the creation of Chip University-Business Chairs, Project TSI 069100-2023-0016, Chip Chair UPM-INDRA (CAUPIME)

