
Open-source SPMP-based CVA6 Virtualization
Manuel Rodríguez∗, José Martins, Bruno Sá and Sandro Pinto

Centro ALGORITMI/LASI - Uminho, OSYX Technologies

Abstract

This work presents the first open-source design and implementation of the RISC-V SPMP for hypervisor. We
integrated the dual-stage SPMP implementation into an MMU-less 64-bit CVA6 core with the Hypervisor extension
enabled. The modified core was functionally validated using a software stack built around the Bao hypervisor.
Preliminary results regarding FPGA resource utilization are also provided. Future work includes benchmarking the
SPMP-based platform and comparing its performance with conventional MMU-based virtualization. Additionally,
we plan to contribute to the RISC-V community by developing a QEMU implementation of the dual-stage SPMP.

Introduction

Virtualization is a key enabling technology in various
domains, from cloud and high-performance computing
to mobile, embedded, and Internet of Things (IoT)
systems. In order to aid hypervisors and ease virtual-
ization, RISC-V introduced the Hypervisor extension
into its privileged architecture. However, even with
these hardware extensions, virtualization adds perfor-
mance overhead and nondeterminism, primarily due to
operations inherent to implicit memory accesses in two-
stage address translation. To address these challenges,
modern MMU-less architectures (e.g., Arm Cortex-
R52 and Infineon TC4x) have adopted MPU-based
virtualization. RISC-V has followed suit, extending
its Physical Memory Protection (PMP) mechanism
with supervisor-mode PMP (SPMP) for task isola-
tion in RTOS environments and later introducing a
dual-stage SPMP for virtualization, compliant with
the Hypervisor extension. In this work, we present
the first open-source, virtualization-capable, SPMP-
based RISC-V platform. Our design builds on a 64-bit
CVA6 core with the Hypervisor extension, replacing
the MMU in the Load-Store Unit (LSU) with our
implementation of the dual-stage SPMP to enable
MPU-based virtualization. The modified design was
functionally validated using a virtualization-based soft-
ware environment built around the Bao hypervisor [1].

RISC-V SPMP for Hypervisor

In RISC-V, the PMP mechanism was initially available
only in machine mode to enforce isolation for firmware
and OS resources. To support Real-time Operating
Systems (RTOS) running in supervisor mode with
hardware-enforced isolation between tasks, the RISC-
V community introduced the supervisor-mode PMP
(SPMP). The SPMP follows a design similar to the
original PMP, featuring up to 64 entries that define

∗Corresponding author: id11674@alunos.uminho.pt

Figure 1: Unified model of the dual-stage SPMP.

region boundaries, permissions, and a mode bit to
differentiate between supervisor and user access.

The SPMP is being extended to support virtualiza-
tion by introducing a dual-stage SPMP. In this design,
the first stage, referred to as virtual SPMP (vSPMP),
is controlled by guest OSes running in VS-mode, while
the second stage is managed by the hypervisor (HS-
mode) to enforce isolation between Virtual Machines
(VMs). Although the current proposal [2] defines two
separate SPMPs controlled by the hypervisor (baseline
SPMP and hgPMP) and one controlled by the VMs
(vSPMP), we follow the alternative model described
in [3], which encompasses a single unified hSPMP con-
trolled by HS-mode and the vSPMP, controlled by
VS-mode. In this model, VM memory accesses are in-
terpreted as user-mode accesses by the unified SPMP,
while hypervisor accesses are checked against supervi-
sor permissions. This approach avoids the potential
waste of unused entries when virtualization is not used.

SPMP-based CVA6
Dual-stage SPMP. We implemented the proposed
unified model of the dual-stage SPMP for hypervisor
in a CVA6 core. The SPMP module includes address
matching and permission enforcement logic replicated
according to the number of SPMP entries defined for
the hart. The module follows a hybrid design, enabling
it to function as either the vSPMP or hSPMP based
on a configurable design parameter. For both cases, all
accesses are internally classified as Smode or Umode,
but the effective privilege is determined based on the
access privilege and the virtualization (V) bit.

RISC-V Summit Europe, Paris, 12-15th May 2025 1

mailto:id11674@alunos.uminho.pt


Figure 2: SPMP integration into the CVA6 LSU.

Integration into CVA6. To integrate the
SPMP into the CVA6 core, we started with
the cv64a6_imafdch_sv39 configuration, disabling
the MMU by clearing the CVA6ConfigMmuPresent
parameter while keeping the Hypervisor exten-
sion enabled (CVA6ConfigHExtEn). We intro-
duced two design parameters to control the
SPMP: CVA6ConfigSpmpPresent for enabling it and
CVA6ConfigNrSPMPEntries to define the number of
entries. Additionally, we incorporated the hSPMP
and vSPMP CSRs into the register file and propa-
gated their values across the design to the LSU. As
shown in Figure 2, we instantiate the spmp_interface
module within the LSU to house all SPMP logic for
memory accesses generated by the core. The design
includes dedicated dual-stage SPMPs for instruction
fetch (IF) and load/store (LS) requests. To enable par-
allel vSPMP and hSPMP checks, the SPMP module is
instantiated twice to represent each dual-stage SPMP.
Each request is processed with a fixed latency of one
clock cycle, after which the SPMP signals completion
and outputs exception data, if an exception occurs.

Preliminary Evaluation
Functional Validation. We adapted the virtual-
ization software environment from [3] to validate the
SPMP-based CVA6. The modifications primarily in-
volved adding support for the CVA6 platform in both
the Bao hypervisor and the guest image, as well as
configuring Bao for a single-core VM setup. Valida-
tion experiments were conducted on FPGA technology
using a Genesys2 development board.
Hardware Utilization After functional validation,
we analyzed FPGA resource utilization across four
CVA6 LSU configurations: (1) with neither MMU nor
SPMP (Bare CVA6 ), (2) with a dual-stage SPMP fea-
turing 32 entries, (3) with a dual-stage SPMP featuring
64 entries, and (4) with MMU but no SPMP (MMU-
based CVA6 ). All configurations include the RISC-V
Hypervisor extension. Table 1 shows the Lookup Table
(LUT) and Flip-Flop (FF) utilization for each configu-
ration, with configurations (2), (3), and (4) showing

Configuration Resource Utilization

(1) Bare CVA6 LUT 3633/203800
FF 1951/407600

(2) SPMP-based CVA6
w/ 32 entries

LUT 8671 (+139%)
FF 2085 (+6.9%)

(3) SPMP-based CVA6
w/ 64 entries

LUT 12324 (+239%)
FF 2085 (+6.9%)

(4) MMU-based CVA6 LUT 11370 (+213%)
FF 7646 (+292%)

Table 1: Hardware resources used by the CVA6 LSU.
The percentage values represent the increase of the LSU

resource utilization relative to the Bare CVA6 (1).

the percentage increase in LSU resource utilization rel-
ative to the Bare CVA6 configuration (1). Our analysis
revealed that the SPMP-based CVA6 uses more LUTs
than the MMU-based configuration when featuring the
maximum number of entries defined by the standard,
but the increase in FF utilization is negligible. This
is expected as the address matching and permission
checking logic within the SPMP is entirely done using
combinatorial logic. A few registers are used within
the spmp_interface module to avoid timing issues.

Roadmap
As for our next steps, we plan to benchmark the SPMP-
based implementation, comparing the results with the
conventional MMU-based virtualization approach. We
also intend to make the SPMP integration more flexible
in order to allow hybrid configurations between the
dual-stage SPMP and the MMU. In a more advanced
phase, we plan to aid in the standardization of the
dual-stage SPMP by implementing support in QEMU.

Conclusion
In this paper, we described the design and implemen-
tation of the RISC-V SPMP for hypervisor in the
CVA6 core. We followed a novel approach for the dual-
stage SPMP design, based on an alternative unified
model. We intend to open-source our implementation
to promote collaboration with the RISC-V community.

Acknowledgments
This work has been supported by FCT – Fundação
para a Ciência e Tecnologia within the R&D Unit
Project of ALGORITMI Centre.

References

[1] J. Martins et al. “Bao: A Lightweight Static Partitioning
Hypervisor for Modern Multi-Core Embedded Systems”.
In: Workshop on NG-RES. 2020.

[2] Dong Du and Sandro Pinto. RISC-V S-mode Physical
Memory Protection for Hypervisor. 2023.

[3] Sandro Pinto and Matjaz Breskvar. “A Novel Trusted Exe-
cution Environment for Next-Generation RISC-V MCUs”.
In: EmbeddedWorld. 2024.

2 RISC-V Summit Europe, Paris, 12-15th May 2025


	Introduction
	RISC-V SPMP for Hypervisor
	SPMP-based CVA6
	Preliminary Evaluation
	Roadmap
	Conclusion
	Acknowledgments

