
VeriCHERI: Exhaustive Formal Security Verification

of CHERI at the RTL

Attacker Model
▪ Capability-enhanced single-core processor executing mutually

distrusting tasks

▪ A trusted entity securely

manages context switches

▪ An attacker task tries to

break memory protection

Formal Model
▪ In our model, two tasks only differ in the

compartmentalization of the memory M into a set of

accessible addresses (Mpub) and a set of protected addresses

(Mprot)

▪ Compartmentalization of M into Mpub and Mprot

is enforced by CHERI capabilities

▪ We introduce a symbolic memory address

that can be chosen freely by the solver

▪ Capabilities of an attacker task are

fully symbolic, except for the fact that

they deny access to the symbolic address

▪ Confidentiality 1-safety property:

AG(cheri_protected(symbolic_addr) → (read_mem_access → mem_addr ≠ symbolic_addr))

▪ Integrity 1-safety property:

AG(cheri_protected(symbolic_addr) → (write_mem_access → mem_addr ≠ symbolic_addr))

RISC-V Summit Europe, Paris

May 12th – May 15th 2025

Case Study on CHERIoT Ibex
▪ 32-bit RISC-V microcontroller implementing RV32IMCB and the

CHERIoT ISA extension in a 2-stage pipeline

▪ VeriCHERI detected a Transient Execution Attack vulnerability

▪ Branch to address outside of PCC bounds

▪ Illegal instruction fetch raises an exception

▪ Exception is delayed depending on two bits of the fetched

data

▪ Performance counter change depending on the two bits

→ Measure the execution time to probe two bits for an arbitrary

protected address

Verification Flow

CHERI Protection
▪ Memory protection via capabilities

▪ Address pointers are enhanced with bounds,

permissions, valid tag and an object type

▪ Legal memory accesses require

valid and matching capabilities

▪ Security verification of CHERI designs

is necessary, but creating trust for the

entire system stack is challenging

Conclusion
▪ VeriCHERI detected several security issues including a

vulnerability to a Transient Execution Attack, which is not

detectable by previous methods

▪ Formulating the security objectives as single-cycle interval

properties allows us to introduce a scalable iterative verification

flow

▪ The developed invariants are implemented as symbolic

verification IPs which may be reused for other CHERI designs

Anna Lena Duque Antón1, Johannes Müller1, Philipp Schmitz1, Tobias Jauch1, Alex Wezel1, Lucas Deutschmann1,

Mohammad R. Fadiheh2, Dominik Stoffel1 and Wolfgang Kunz1

1 RPTU Kaiserslautern-Landau, Germany 2 Stanford University, USA

Memory

0x10001000

Lower bound

Upper bound

R/W/X, type,

CHERI

capability

Processor Memory

trusted

Memory

Symbolic

address
protected

Mprot

Mpub

Mpub

Confidentiality Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: !read_mem || mem_addr != symbolic_addr

Integrity Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: !write_mem || mem_addr != symbolic_addr

Monotonicity Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: cheri_protected(symbolic_addr)

UPEC-CHERI Interval Property:

 t: cheri_protected(symbolic_addr)

 t: $Mpub == $M’pub && $P == $P’

 implies

 t + k: $Parch == $P’arch

	Folie 1

