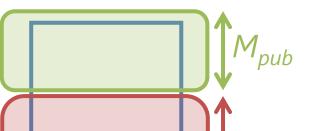

VeriCHERI: Exhaustive Formal Security Verification of CHERI at the RTL

Anna Lena Duque Antón¹, Johannes Müller¹, Philipp Schmitz¹, Tobias Jauch¹, Alex Wezel¹, Lucas Deutschmann¹, Mohammad R. Fadiheh², Dominik Stoffel¹ and Wolfgang Kunz¹

RPTU Kaiserslautern-Landau, Germany² Stanford University, USA

CHERI Protection


- Memory protection via capabilities
- Address pointers are enhanced with bounds, permissions, valid tag and an object type
- Legal memory accesses require valid and matching capabilities
- Security verification of CHERI designs is necessary, but creating trust for the entire system stack is challenging

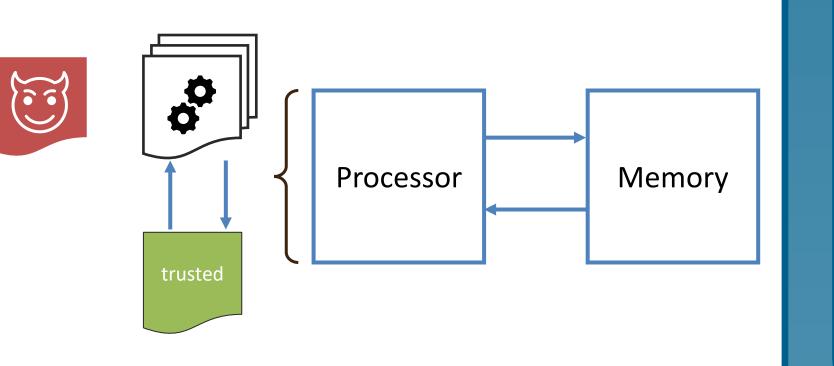
Memory

Formal Model

- In our model, two tasks only differ in the compartmentalization of the memory *M* into a set of accessible addresses (M_{pub}) and a set of protected addresses (M_{prot})
- Compartmentalization of *M* into *M*_{pub} and *M*_{prot} is enforced by CHERI capabilities
- We introduce a symbolic memory address that can be chosen freely by the solver Symbolic

protected

Memory


address

■ M_{prot}

M_{pub}

Attacker Model

- Capability-enhanced single-core processor executing mutually distrusting tasks
- A trusted entity securely manages context switches
- An **attacker task** tries to break memory protection

- Capabilities of an attacker task are fully symbolic, except for the fact that they deny access to the symbolic address
- Confidentiality 1-safety property:

 $AG(cheri_protected(symbolic_addr) \rightarrow (read_mem_access \rightarrow mem_addr \neq symbolic_addr))$

Integrity 1-safety property:

 $AG(cheri_protected(symbolic_addr) \rightarrow (write_mem_access \rightarrow mem_addr \neq symbolic_addr))$

Verification Flow

t: cheri_protected(symbolic_addr)

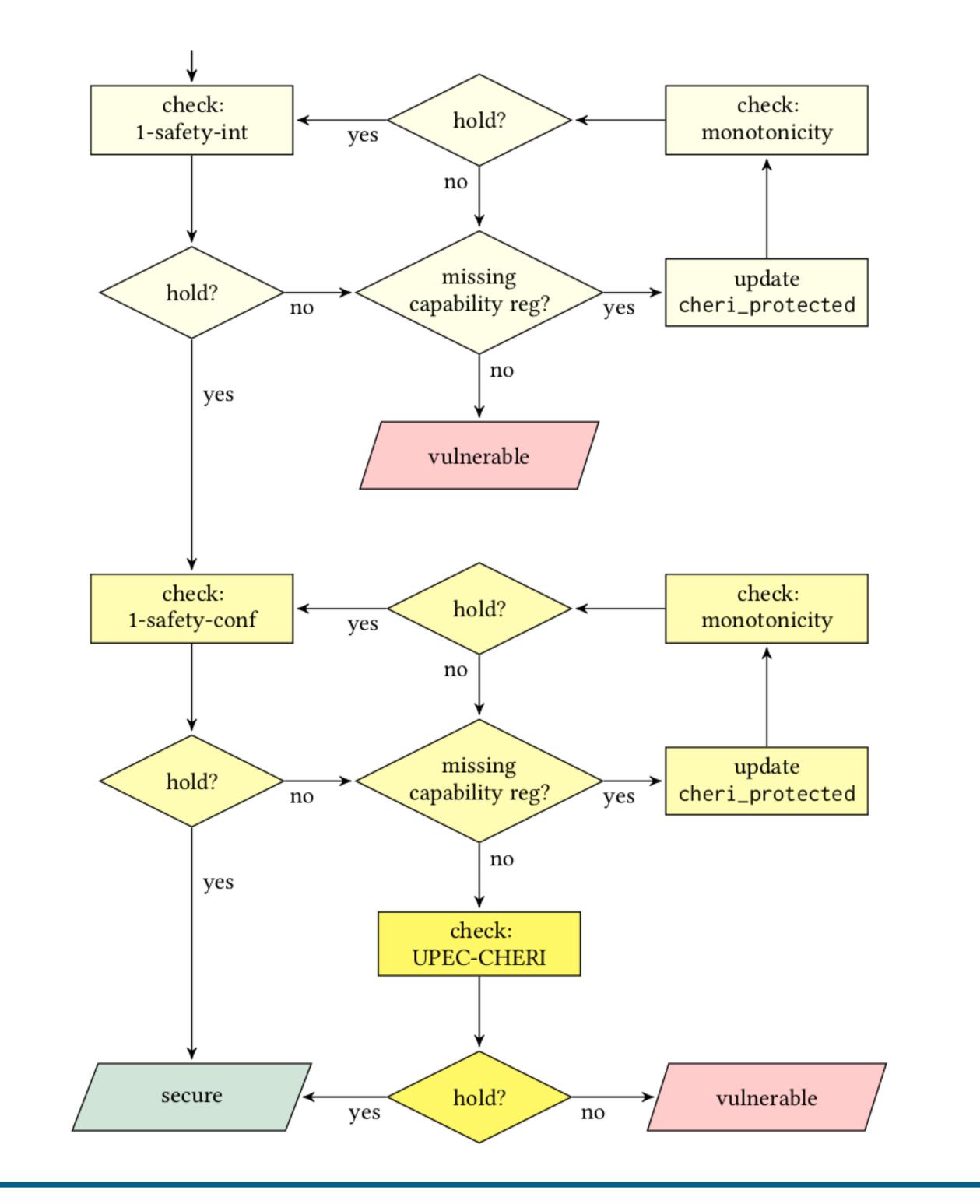
implies

t: !read_mem || mem_addr != symbolic_addr

Integrity Interval Property:

t: cheri_protected(symbolic_addr) implies

t: !write_mem || mem_addr != symbolic_addr


Case Study on CHERIOT Ibex

32-bit RISC-V microcontroller implementing RV32IMCB and the CHERIOT ISA extension in a 2-stage pipeline

Property	Iteration	Result	Runtime	Memory	Description
1-safety-integrity	1	fail	< 1 min	4.3 GB	<i>Bug</i> : setup guide specification of protection enable pin
	2	fail	< 1 min	4.7 GB	Bug: capability stores across capability bounds
	3	hold	7 min	4.8 GB	-
Monotonicity	1-9	fail	$\leq 1 \min$	4-5 GB	Missing capability register or pipeline buffer
	10	hold	15 min	6.2 GB	-
1-safety-confidentiality					
→ data	1	hold	7 min	7.3 GB	-
\longrightarrow instructions	1	fail	< 1 min	4.8 GB	Instruction fetched from outside PCC bounds
UPEC-CHERI	1	fail	31 min	3.7 GB	Side channel: exception timing depends on fetched data
	2	hold	18 min	6.3 GB	-

Monotonicity Interval Property:	UPEC-CHERI Interval Property:
<pre>t: cheri_protected(symbolic_addr)</pre>	<pre>t: cheri_protected(symbolic_addr)</pre>
<pre>implies t: cheri_protected(symbolic_addr)</pre>	<pre>t: \$M_{pub} == \$M'_{pub} && \$P == \$P' implies</pre>
	t + k: \$P _{arch} == \$P' _{arch}

•	
	<pre>t: cheri_protected(symbolic_addr)</pre>
	t: \$M _{pub} == \$M' _{pub} && \$P == \$P'
	implies
	t + k: \$P _{arch} == \$P' _{arch}

- VeriCHERI detected a Transient Execution Attack vulnerability
 - Branch to address **outside of PCC bounds**
 - Illegal instruction fetch raises an exception
 - Exception is delayed depending on two bits of the fetched data
 - **Performance counter change** depending on the two bits
- → Measure the execution time to **probe two bits** for an **arbitrary** protected address

Conclusion

- VeriCHERI detected several security issues including a vulnerability to a Transient Execution Attack, which is not detectable by previous methods
- Formulating the security objectives as single-cycle interval properties allows us to introduce a scalable iterative verification flow
- The developed invariants are implemented as symbolic verification IPs which may be reused for other CHERI designs

RISC-V Summit Europe, Paris May 12th – May 15th 2025

