
VeriCHERI: Exhaustive Formal Security Verification 

of CHERI at the RTL

Attacker Model
▪ Capability-enhanced single-core processor executing mutually 

distrusting tasks

▪ A trusted entity securely

manages context switches

▪ An attacker task tries to 

break memory protection

Formal Model
▪ In our model, two tasks only differ in the 

compartmentalization of the memory M into a set of 

accessible addresses (Mpub) and a set of protected addresses 

(Mprot)

▪ Compartmentalization of M into Mpub and Mprot  

is enforced by CHERI capabilities

▪ We introduce a symbolic memory address

that can be chosen freely by the solver

▪ Capabilities of an attacker task are 

fully symbolic, except for the fact that

they deny access to the symbolic address

▪ Confidentiality 1-safety property:

AG(cheri_protected(symbolic_addr) → (read_mem_access  → mem_addr ≠ symbolic_addr))

▪ Integrity 1-safety property:

AG(cheri_protected(symbolic_addr) → (write_mem_access → mem_addr ≠ symbolic_addr))
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Case Study on CHERIoT Ibex
▪ 32-bit RISC-V microcontroller implementing RV32IMCB and the 

CHERIoT ISA extension in a 2-stage pipeline

▪ VeriCHERI detected a Transient Execution Attack vulnerability

▪ Branch to address outside of PCC bounds

▪ Illegal instruction fetch raises an exception

▪ Exception is delayed depending on two bits of the fetched 

data

▪ Performance counter change depending on the two bits

→ Measure the execution time to probe two bits for an arbitrary 

protected address 

Verification Flow

CHERI Protection
▪ Memory protection via capabilities

▪ Address pointers are enhanced with bounds, 

permissions, valid tag and an object type

▪ Legal memory accesses require

valid and matching capabilities 

▪ Security verification of CHERI designs

is necessary, but creating trust for the

entire system stack is challenging

Conclusion
▪ VeriCHERI detected several security issues including a 

vulnerability to a Transient Execution Attack, which is not 

detectable by previous methods

▪ Formulating the security objectives as single-cycle interval 

properties allows us to introduce a scalable iterative verification 

flow

▪ The developed invariants are implemented as symbolic 

verification IPs which may be reused for other CHERI designs
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Confidentiality Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: !read_mem || mem_addr != symbolic_addr

Integrity Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: !write_mem || mem_addr != symbolic_addr

Monotonicity Interval Property:

 t: cheri_protected(symbolic_addr)

 implies

 t: cheri_protected(symbolic_addr)

UPEC-CHERI Interval Property:

 t: cheri_protected(symbolic_addr)

 t: $Mpub == $M’pub && $P == $P’

 implies

 t + k: $Parch == $P’arch
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