
CHERI-Muntjac: an efficient, secure,
application-class core

Yuecheng Wang, Jonathan Woodruff, Peter Rugg, Alexandre Joannou,
Samuel W. Stark and Simon W. Moore

Department of Computer Science and Technology, University of Cambridge

Abstract

The research interest in CHERI has been increasing over the past decade. Various research projects have been
conducted on commercial Morello and CHERI-Toooba [1] over the years, a high parameterisable core written
in BlueSpec SystemVerilog. There is an ongoing research need of more diverse CHERI systems to evaluate
and utilize CHERI more extensively. Moreover, there is a need for more commercial grade cores written in
SystemVerilog to aim commercial adoption. While CHERIoT from Microsoft and SCI Semi demonstrates
CHERI for microcontrollers, we demonstrate CHERI for a commercial application-class scalar core by extending
Muntjac from lowRISC.

Introduction

Muntjac is an open-source collection of components
which can be used to build a multi-core, Linux-capable
system-on-chip [2]. The main components it includes
are a 64-bit RISC-V core, a MESI capable cache sys-
tem, and TileLink interconnect peripherals.
Muntjac has a few features that make it an interesting
candidate for a CHERI extension. It has a simple
5-stage in-order pipeline which is easy to understand,
nevertheless it implements the required extensions to
boot Linux; it also has an interesting data cache imple-
mentation to support faster write-back and refill; it is
written in SystemVerilog which is favored by industry,
compared to Bluespec SystemVerilog, the language
of most current open-sourced CHERI processors. In
addition, Muntjac has a small area footprint on FPGA
which allows evaluation of CHERI systems with higher
concurrency than previously possible.

CHERI extension

Our CHERI-extended Muntjac implements the
CHERI V9 specification [3]. It is a work in progress,
and it has been tested using TestRIG [4] throughout
development. CHERI-Muntjac is currently in the
final stages of booting CheriFreeRTOS in simulation,
with a delivery target of booting CheriBSD on FPGA
by the time this work is presented.
This section will briefly describe the changes we made
to the Muntjac SoC to support CHERI.

Extending the pipeline

The majority of the changes to support CHERI were
in the pipeline of the core. When adding CHERI, it

is important to decide how the capability should flow
through the pipeline, as the capability needs to be
converted between several formats across the pipeline
units. The Bluespec CHERI-RISC-V implementations
used a two-stage decompression: one for the register
file and one for the execute stage.
To avoid complicating Muntjac’s elegant pipeline, we
perform a single capability decompression into the reg-
ister file with all fields necessary for execution. If area
usage becomes a concern, we can revisit this decision
in the future.
We use micro-architectural primitives from the for-
mally verified cheri-cap-lib library [5] to support se-
cure capability compression and manipulation. We
plan to re-design and re-implement the cheri-cap-lib
library [5] in SystemVerilog once we have a working
CHERI-Muntjac.

Preserving the cache structure

Muntjac’s cache system has some unique features
which required special attention when modifying it
to support CHERI. It has a 64-bit interface to the L1
cache but uses the interleaving scheme in Figure 1 to
provide a wider 128-bit interface at the LLC [2]. The
CHERI extension requires reading and writing 128-bit

Figure 1: Muntjac data cache interleaving [2]

RISC-V Summit Europe, Paris, 12-15th May 2025 1



capability words atomically. Other CHERI RISC-V
cores choose to double the granule size of their RAM
to support this, which changes the cache structure.
Naively doubling the granule size on Muntjac would
require doubling the LLC interface width to 256-bit,
or disabling cache interleaving, which are both non-
optimal.
To preserve Muntjac’s cache interleaving logic while
keeping the width of the bus and cache constant, we
re-purposed this logic to support the wider, 128-bit
pipeline accesses. As shown in Figure 1 each block
represents a 64-bit-wide data bank, and a single ac-
cess can span multiple banks, which are also used in
multiple ways. For instance, to write 128 bits of data,
the data will be split into A0 and A1 and written
separately; on read, we combine the output of A0 and
A1 into one 128-bit word.
We are currently experimenting with this feature; it is
functioning correctly, and we are working on improving
the interleaving algorithm to increase its performance
for 128-bit data access.

SystemVerilog Tag Controller

CHERI requires a single tag bit for every capability
word in memory, and a tag controller is required to
manage these tags [6] . Instead of using the BlueSpec
Tag controller [6], we chose to implement a CHERI tag
controller in SystemVerilog as a component connected
to Muntjac’s TileLink interconnect. Previous AXI
CHERI tag controllers have used the AXI .user field
to communicate tags, but the TileLink standard
lacks a user-defined field. For a general solution, we
extended the TileLink protocol with a user-defined
field to pass the CHERI tag bit.
A simple version of this tag controller is functioning
correctly now, and we plan to implement the hierar-
chical tag table optimization after CHERI-Muntjac
boots on CheriBSD. We also plan to use this design
to evaluate several novel tag optimization strategies.

Verifying CHERI extension

Our delivery targets include the following phases:

1. Testing against TestRIG. We have used
TestRIG extensively throughout the development
process. We now pass all CHERI module tests,
and we are running increasingly deep sequences
of the CapRandom test-suite to identify subtle
divergences from the model.

2. Booting CheriFreeRTOS in simulation. We
are at the stage of trying to boot CheriFreeRTOS
(CHERI-extended FreeRTOS) on Muntjac in sim-
ulation. As debugging an OS boot on FPGA is

time consuming, running CheriFreeRTOS in sim-
ulation can help us identify many problems early
before running on FPGA.

3. Booting CheriBSD on FPGA. Booting
CheriBSD on Muntjac running on FPGA is our
delivery target. We plan to re-run some bench-
marks to compare it with other CHERI processors
we have.

TestRIG-driven development

TestRIG has been the main testing framework for
verifying our CHERI-Muntjac extension against the
CHERI-Sail model. TestRIG guides the implementa-
tion of basic features and also helps us identify rarely
occurring bugs. The CHERI specification has some
subtle details which can be easily missed or misinter-
preted; TestRIG identified rare bugs, and its shrinking
feature was particularly useful for identifying the root
cause of the misbehavior.

Community Contributions

We plan to release documentation describing our
CHERI-Muntjac implementation along with the
CHERI-Muntjac source codes, so that it can be used
as a guide for extending any Linux/FreeBSD-capable
RISC-V system with CHERI.
CHERI-Muntjac fills an important gap in the com-
munity of CHERI RISC-V processors; current open-
source application class designs are not suitable for
industrial adoption, as they are written in Bluespec
and not focused on efficiency. CHERI-Muntjac can
also enable larger CHERI system research. Because
Muntjac is very small, we can fit more cores on our
DE10-Pro FPGA, allowing research into highly con-
current CHERI systems.

References

[1] P. Rugg et al. CHERI-cap-lib. https://github.com/CTSRD-
CHERI/Toooba.

[2] Xuan Guo et al. Muntjac multicore RV64 processor. Tech.
rep. University of Cambridge, 2022.

[3] Robert N. M. Watson et al. Capability Hardware Enhanced
RISC Instructions: CHERI Instruction-Set Architecture
(Version 9). Tech. rep. University of Cambridge, 2023.

[4] A. Joannou et al. “Randomized testing of RISC-V CPUs
using direct instruction injection”. In: IEEE Design & Test
(2023).

[5] J. Woodruff et al. CHERI-cap-lib. https://github.com/
CTSRD-CHERI/cheri-cap-lib.

[6] A. Joannou et al. TagController. https://github.com/
CTSRD-CHERI/TagController.

2 RISC-V Summit Europe, Paris, 12-15th May 2025

https://github.com/CTSRD-CHERI/Toooba
https://github.com/CTSRD-CHERI/Toooba
https://github.com/CTSRD-CHERI/cheri-cap-lib
https://github.com/CTSRD-CHERI/cheri-cap-lib
https://github.com/CTSRD-CHERI/TagController 
https://github.com/CTSRD-CHERI/TagController 

	Introduction
	CHERI extension
	Extending the pipeline
	Preserving the cache structure
	SystemVerilog Tag Controller

	Verifying CHERI extension
	TestRIG-driven development
	Community Contributions

