

TYRCA: **A RISC-V Tightly-coupled accelerator** for Code-based Cryptography

Alessandra Dolmeta ^{1,2}, Stefano Di Matteo ^{2,3}, Emanuele Valea³, Mikael Carmona², Antoine Loiseau², Maurizio Martina¹, Guido Masera¹

1 Politecnico di Torino, DET - Dipartimento di Elettronica e Telecomunicazioni, Turin, Italy, 2 Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, 3 Université Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Introduction

- Quantum computers threaten classical cryptosystems like RSA and ECC, prompting the need for **Post-Quantum Cryptography** (PQC). Among PQC candidates, **HQC** has been selected for standardization (March 2025).
- It is a strong alternative but suffers from inefficient implementation. Indeed, its standardization process is not only about the development of the mathematical models but has also given rise to a broad spectrum of research, spanning to software and hardware.

Background

• \mathcal{R} -Unit.

• From 64-bit to 32-bit integer Karatsuba multiplication implementation.

• 1 custom instruction \rightarrow break each 64-bit in two 32-bit chunks.

One carry-less multiplier, few registers, XORoperations logic, and the logic to manage inputs, store intermediate results.

Karatsuba (*A*, *B*):

karats res_0, A_0, B_0 karats res_3, A_1, B_1 karats res_2, x_0, x_0 karats res_1, x_0, x_0

Code. Karatsuba structure.

HQC is a Key Encapsulation Mechanism (KEM), based on the syndrome decoding problem on structured **codes**, using two linear codes.

- It consists of three functions:
 - KeyGeneration
 - Encapsulation

Decapsulation HQC has three security levels [1].

- HQC-128 profiled on a 32-bit SoC (CV32E40PX core, using -O2 optimization flag). Our analysis shows that polynomial multiplication dominates execution time (> 95%), while RS-RM encoding/decoding creates bottlenecks in encapsulation and decapsulation. Keccak, though minimal, is consistently used throughout the algorithm.
- Integrating Accelerators into RISC-V. There are three possible

Figure 4. TYRCA architecture.

Reed-Solomon (RS) decoder. To enhance performance, we accelerated critical Galois Field (GF) arithmetic operations: GF-reduce - polynomial reduction via shift/XOR (3 custom insn). GF-carryless - multiplication of 8-bit polynomials (4 custom insn).

• Keccak. Keccak processes 1600-bit data in 24 rounds. To reduce load/store overhead, it has a dedicated register and 3 custom insn: store – uploads state matrix (64-bit at a time).

integration loosely-coupled, tightly-coupled methods: and coprocessors. **Coprocessors** are usually connected via a dedicated interface, enabling higher flexibility and access to external registers.

Figure 2. Common tightly approach vs. CV-X-IF.

- CV-X-IF [2] adds custom instructions without modifying the CPU decode unit, exploiting unused opcodes to trigger TYRCA. It ensures:
- low-latency register access
- external extension support
- synchronous execution.

TYRCA

- We chose an adaptive platform that includes a **CV32E40PX** [3] core, ulletallowing us to leverage the CV-X-IF. The main elements are: TYRCA, the RISC-V core, instruction and data memories, the JTAG module, the UART, an OBI bus.

start – initiates 24-round processing.

○ *load* – saves results (32-bit at a time).

Results & Conclusions

TYRCA is implemented at the RTL using SystemVerilog and deployed on the **Xilinx Kintex-7 FPGA**, specifically on the Digilent Genesys 2 board. Synthesis and Place&Route are performed using Xilinx Vivado.

Function	SW	SW + TYRCA	Calls	Speed-up (%)
Karatsuba	6,072	52	59,142	99.14
GF-carryless	300	56	4,998	81.33
GF-reduce	1,660	145	5,589	91.27
Keccak-f	26,825	2,538	143	90.54

Table 1. Performance Improvement Comparison [clock cycles]. Calls indicates the number of calls done to the different function in HQC-128, while speed-up is the ratio between SW and SW+TYRCA.

HQC	Version	KeyGen	Encaps	Decaps
hqc-128	SW	66,029,999	133,331,422	208,550,842
	TYRCA	3,108,737 [- <mark>95.29%</mark>]	6,302,661 [- <mark>95.27%</mark>]	11,095,034 [- <mark>94.68%</mark>]
hqc-192	SW	195,307,650	392,977,384	600,490,993
	TYRCA	10,847,737 [- <mark>95.22%</mark>]	22,578,534 [- <mark>95.27%</mark>]	34,895,339 [- <mark>94.97%</mark>]
	SW	357,245,737	719,137,771	1,106,009,231

- **TYRCA** architecture is mainly composed of: the CV-X-IF controller \Box various accelerators (\mathcal{R} -Unit, RS-decoder, Keccak).
- Each of these accelerators \bullet is customized to execute one or more instructions.

Figure 3. System on Chip architecture.

The CV-X-IF is connected directly to the register file of the CPU. ullet**Inline assembly** is used; by specifying function codes and operands, these instructions execute specialized operations on TYRCA.

hqc-256 **TYRCA** 20,153,688 64,999,457 41,469,541 [**-95.06**%] **[-95.13%]** [-**94.82**%]

Table 2. Clock cycles and improvement results (SW is HQC from version round 4 – 2024 [1])

	LUT	Registers
SoC Top-Level	33,701	21,806
TYRCA	8,894	3,710
CV-X-IF Controller	75	163
- Keccak	5,418	1,628
- <i>R</i> -Unit	905	255
- RS-decoder	222	0

Table 3. Resource Utilization on FPGA.

This underscores TYRCA's potential in robust PQC.

Reference

[1] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.- C. Deneuville, P. Gaborit, E. Persichetti, G. Zemor, and I. Bourges, "Hamming Quasi-Cyclic (HQC) Fourth Round Version." Online, 2024. Updated version 23/02/2024. [2] https://github.com/openhwgroup/core-v-xif/tree/main [3] <u>https://github.com/esl-epfl/cv32e40px</u>