
Reference

TYRCA:
A RISC-V Tightly-coupled accelerator

for Code-based Cryptography
1 Politecnico di Torino, DET - Dipartimento di Elettronica e Telecomunicazioni , Turin, Italy, 2 Université Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France, 3 Université Grenoble Alpes, CEA, List, F-38000 Grenoble, France

Alessandra Dolmeta 1,2, Stefano Di Matteo 2,3, Emanuele Valea3, Mikael Carmona2, Antoine Loiseau2, Maurizio Martina1, Guido Masera1

[1] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.- C. Deneuville, P. Gaborit, E. Persichetti, G. Zemor, and I. Bourges, “Hamming Quasi-Cyclic (HQC) Fourth Round Version.” Online, 2024. Updated version 23/02/2024.
[2] https://github.com/openhwgroup/core-v-xif/tree/main
[3] https://github.com/esl-epfl/cv32e40px

Introduction
• Quantum computers threaten classical cryptosystems like RSA and

ECC, prompting the need for Post-Quantum Cryptography (PQC).
Among PQC candidates, HQC has been selected for standardization
(March 2025).

• It is a strong alternative but suffers from inefficient implementation.
Indeed, its standardization process is not only about the development
of the mathematical models but has also given rise to a broad spectrum
of research, spanning to software and hardware.

Background
Public
Private

Figure 1. Key Encapsulation Mechanism.

• HQC-128 profiled on a 32-bit SoC (CV32E40PX core, using –O2
optimization flag). Our analysis shows that polynomial multiplication
dominates execution time (> 95%), while RS-RM encoding/decoding
creates bottlenecks in encapsulation and decapsulation. Keccak,
though minimal, is consistently used throughout the algorithm.

• Integrating Accelerators into RISC-V. There are three possible
integration methods: loosely-coupled, tightly-coupled and
coprocessors. Coprocessors are usually connected via a dedicated
interface, enabling higher flexibility and access to external registers.

• CV-X-IF [2] adds custom instructions without modifying the CPU
decode unit, exploiting unused opcodes to trigger TYRCA. It ensures:
o low-latency register access
o external extension support
o synchronous execution.

Figure 2. Common tightly approach vs. CV-X-IF.

TYRCA

• TYRCA architecture is
mainly composed of:
❑ the CV-X-IF controller
❑ various accelerators (ℛ-

Unit, RS-decoder,
Keccak).

• Each of these accelerators
is customized to execute
one or more instructions.

• We chose an adaptive platform that includes a CV32E40PX [3] core,
allowing us to leverage the CV-X-IF. The main elements are: TYRCA, the
RISC-V core, instruction and data memories, the JTAG module, the
UART, an OBI bus.

Figure 3. System on Chip architecture.

Results & Conclusions

Figure 4. TYRCA architecture.

• The CV-X-IF is connected directly to the register file of the CPU.
Inline assembly is used; by specifying function codes and operands,
these instructions execute specialized operations on TYRCA.

• ℛ-Unit.
• From 64-bit to 32-bit integer Karatsuba

multiplication implementation.
• 1 custom instruction → break each 64-bit in

two 32-bit chunks.
• One carry-less multiplier, few registers, XOR-

operations logic, and the logic to manage
inputs, store intermediate results.

• Reed-Solomon (RS) decoder. To enhance performance, we
accelerated critical Galois Field (GF) arithmetic operations:
❑GF-reduce - polynomial reduction via shift/XOR (3 custom insn).
❑GF-carryless - multiplication of 8-bit polynomials (4 custom insn).

• Keccak. Keccak processes 1600-bit data in 24 rounds. To reduce
load/store overhead, it has a dedicated register and 3 custom insn:
o store – uploads state matrix (64-bit at a time).
o start – initiates 24-round processing.
o load – saves results (32-bit at a time).

Karatsuba (𝑨,𝑩):

karats 𝑟𝑒𝑠0, 𝐴0, 𝐵0
karats 𝑟𝑒𝑠3, 𝐴1, 𝐵1
karats 𝑟𝑒𝑠2, 𝑥0, 𝑥0
karats 𝑟𝑒𝑠1, 𝑥0, 𝑥0

Code. Karatsuba structure.

Function SW SW + TYRCA Calls Speed-up (%)
Karatsuba 6,072 52 59,142 99.14

GF-carryless 300 56 4,998 81.33
GF-reduce 1,660 145 5,589 91.27

Keccak-f 26,825 2,538 143 90.54
Table 1. Performance Improvement Comparison [clock cycles]. Calls indicates the number of calls done to the different function in

HQC-128, while speed-up is the ratio between SW and SW+TYRCA.

HQC Version KeyGen Encaps Decaps

hqc-128
SW 66,029,999 133,331,422 208,550,842

TYRCA 3,108,737
[-95.29%]

6,302,661
[-95.27%]

11,095,034
[-94.68%]

hqc-192

SW 195,307,650 392,977,384 600,490,993

TYRCA 10,847,737
[-95.22%]

22,578,534
[-95.27%]

34,895,339
[-94.97%]

hqc-256

SW 357,245,737 719,137,771 1,106,009,231

TYRCA 20,153,688
[-95.06%]

41,469,541
[-95.13%]

64,999,457
[-94.82%]

TYRCA is implemented at the RTL using SystemVerilog and deployed on
the Xilinx Kintex-7 FPGA, specifically on the Digilent Genesys 2 board.
Synthesis and Place&Route are performed using Xilinx Vivado.

Table 2. Clock cycles and improvement results (SW is HQC from version round 4 – 2024 [1])

This underscores TYRCA’s potential in robust PQC.

HQC is a Key Encap-
sulation Mechanism
(KEM), based on the
syndrome decoding
problem on structu-
red codes, using two
linear codes.
• It consists of three

functions:
▪ KeyGeneration
▪ Encapsulation
▪ Decapsulation
HQC has three
security levels [1].

LUT Registers
SoC Top-Level 33,701 21,806
TYRCA 8,894 3,710

• CV-X-IF Controller 75 163
- Keccak 5,418 1,628
- ℛ-Unit 905 255
- RS-decoder 222 0

Table 3. Resource Utilization on FPGA.

https://github.com/openhwgroup/core-v-xif/tree/main
https://github.com/esl-epfl/cv32e40px

	Diapositiva 1

