
Mark Hill, Distinguished Engineer & Lead CPU Architect

www.codasip.com

Efficient system-level support
for CHERI Capabilities

→ CMU challenges
• Preserving atomicity of tag and data stored in different

locations
- In a system with multiple bus managers and subordinates
- Downstream bus fabric and IPs are aggressively reordering
 transactions (to optimize throughput)

• Minimizing overhead, both in terms of bandwidth and latency,
to a level comparable to non-CHERI implementations

• Maximizing design re-use, by supporting a wide-range of
use-cases

• A system using CHERI (Capability Hardware Enhanced RISC
Instructions) must maintain a tag bit for every memory
location that can hold a capability

• Tag and all bytes of the data in a capability must appear, by
all observers in the system, to be updated atomically (single
copy atomicity)

• When tag and data can be co-located maintaining atomicity
is straightforward

• But sometimes they cannot…
- Integration of tag-aware subsystems (e.g. security islands)
 into non-tag aware systems
- Integration with standard, non-tag aware, system IPs: such
 as Dynamic Memory Controllers and Last Level Caches

• Tag and data then need to be stored in separate locations
• This is the issue that the Capability Management Unit (CMU)

has been designed to address

→ Maximising design re-use
• Highly configurable IP
• Supports Multiple Tag management strategies that can be

configured in/out at build time and be selected at run time
• Address filtering allows strategy to be selected on a per

region basis
• Tag handling can be disabled for any regions not required to

store capabilities
• Performance, Power and Area (PPA) can be scaled and finely

tuned to target system for use in everything from a small
embedded systems to high performance servers

→ System-level requirements for CHERI

→ Status and acknowledgements
• Release now available for partner evaluation
• Evaluation Platform

- Integrates CMU with Codasip X730 core on an FPGA board
- Booting Linux in Tag Group Cache Mode and running Doom!
- Platform release for partners available imminent
- Next step integrating performance counters into Linux
 profiler we can perform detailed performance study

• This work acknowledges the research done at Cambridge
University in this area (Efficient Tagged Memory by
Alexandre Joannou et al.)

→ Example
deployments

→ Tag Stash Mode
• All tag bits held in local

memory within the CMU
+ No additional external
 memory requests ever
 generated
- Requires 1-bit of local
 memory for every
 location in external
 memory which can hold
 a capability
- On-chip memory demand
 gets too high for larger
 external memories,
 realistic limit is about
 128Mbytes

• Example use case: Tag bits for
a security island requiring some
off-chip capability storage

→ Tag Cache Mode
• Tags bits for recently

accessed memory stored
in a tag cache

• Each Tag Cache Line
caches the tags for
nominally a 4K memory
block (when the line size is
256-bit and CLEN is
128-bit)

+ No limit on size of memory
 on which cache operates.

- General issues associated with
 caching e.g. non-determinism
 compared to Tag Stash Mode

→ Combining Modes: Address Filtering
• CMU has a configurable

number of address filters
• Each Address Filter Table

Entry (AFTE) defines a
region using a NAPOT
encoding scheme similar
to that used in the PMP

• Unmapped regions are
handled as untagged

• Tag handling strategies
can be assigned on a per
region basis at run-time

• Memory used as tag storage
can, by default, only be
accessed by the CMU

