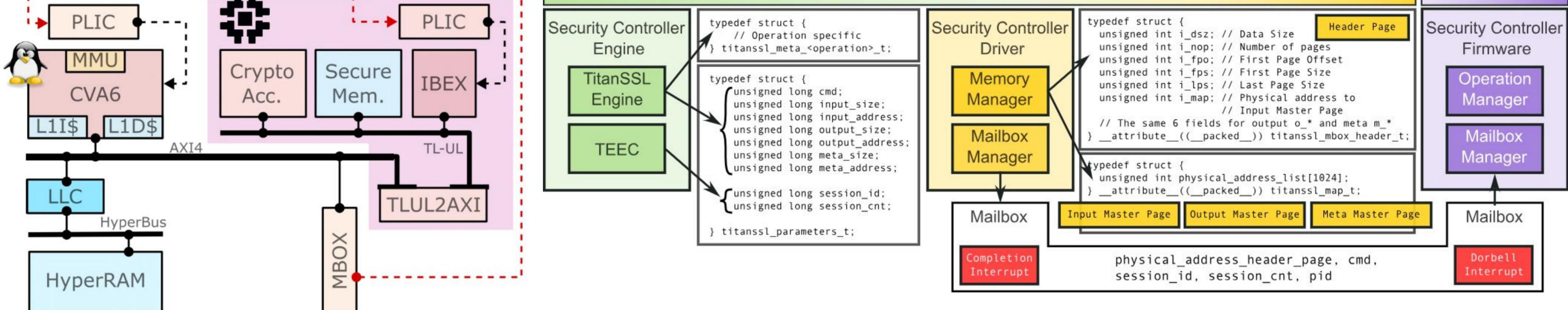


ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Optimizing TLS Cryptographic Operations on RISC-V SoC with OpenTitan RoT

A. Musa¹, E. Parisi², L. Barbierato³, E. Patti³, A. Bartolini¹, A. Acquaviva¹, F. Barchi¹


¹Department of Electrical, Electronic, and Information Engineering (DEI) – University of Bologna, Italy

²Barcelona Supercomputing Center -Barcelona, Spain

³Department of Control and Computer Engineering (DAUIN) -Polytechnic of Turin, Italy

<alberto.musa@unibo.it>

		_		_	_	_	-	_	_	_	_	_	_	-	_	_	_	-	_	_	- 1	Y	_	_	_	_	_	-	_	_	_

1. Motivation and Contribution

Secure communication is essential in embedded systems, particularly in resource-constrained environments. This work integrates OpenTitan, a hardware **Root-of-Trust** (RoT), within a RISC-V-based SoC to accelerate cryptographic operations for Transport Layer Security (TLS). The key contributions include:

- Development of **TitanSSL**, a cryptographic software stack leveraging **OpenTitan's hardware accelerators for cryptographic tasks.**
- Offloading of AES, SHA, and RSA operations to dedicated hardware accelerators. Comprehensive performance evaluation of TitanSSL's highlights the balance between computational overhead and acceleration benefits. Providing a secure backend for OpenSSL within the SoC architecture and integrating OpenSSL to support the TLS_RSA_WITH_AES_256_CBC_SHA256 cipher suite.

2. System Architecture and Implementation

The system consists of a CVA6 application processor running Linux, an OpenTitan-based security subsystem, and a communication mechanism via a mailbox interface. OpenSSL functions are extended through an OpenSSL Engine and a Linux driver to delegate cryptographic operations to OpenTitan. The firmware on OpenTitan directly interfaces with hardware accelerators, ensuring secure execution. A custom communication protocol was designed to efficiently handle data exchange between the CVA6 and OpenTitan, addressing challenges

like synchronization and latency. Shared HyperRAM is used for data transfer, with address translation and locking mechanisms ensuring secure access. Key challenges include:

- Lack of MMU in OpenTitan, requiring manual address management.
- Cache asymmetry between CVA6 and OpenTitan, requiring efficient data synchronization.

										SHA-256 (Software Reference)		SHA-256 (TitanSSL)	2
Payload	SHA [KiB/s]		Speedup	OT	AES [KiB/s]	Speedup	OT	[107	Reference Speedup	10 ²
[Byte]	OpenSSL	L TitanSSL	Special	Limit	OpenSSL	TitanSSL	~PP	Limit	[S]		ی 10,	TitanSSL Theoretical limit	-
16	43	12	0.29x	0.0%	216	52	0.24x	0.1 %	Byte/		91 Byte	Ineorecical Infine	10 ¹ dnp
32	87	31	0.36x	0.1%	239	140	0.59x	0.4%	0 105	\sim] pa		bee
48	130	36	0.28x	0.1%	248	177	0.72x	0.5%	a 10 ⁵ -		0 5 105		l s
64	118	55	0.46x	0.2%	250	191	0.76x	0.5%			10		10°
112	194	82	0.42x	0.3%	259	394	1.52x	1.0 %					E
128	178	116	0.65x	0.4%	260	350	1.35x	0.9%	L	25 27 29 211 213	J 10 ⁴	25 27 29 211 213	1
240	257	137	0.53x	0.5 %	264	627	2.38x	1.6%		Payload [Byte]		Payload [Byte]	
256	238	186	0.78x	0.6 %	264	402	1.52x	1.0 %		AES-256-CBC (Software Reference)		AES-256-CBC (TitanSSL)	
496	303	169	0.56x	0.6%	265	386	1.46x	1.0 %	2.7×10^{5}				10 ²
512	288	382	1.33x	1.3%	265	578	2.18x	1.5%	August Second		107	Reference ······ Speedup	
1008	330	705	2.13x	2.4%	267	4233	15.86x	10.8%	_ 2.6×10 ⁵		20. 10.	TitanSSL Theoretical limit	[
1024	320	537	1.68x	1.8%	267	3840	14.38x	9.8%	$\sum_{n=1}^{10} 2.5 \times 10^{5}$		3yte,		101 2
2032	347	1136	3.27x	3.9%	268	3501	13.08x	9.0 %	E P		망 10 ⁶		peed
2048	341	1300	3.82x	4.4%	268	4436	16.57x		a 2.4×10 ⁵ -		Spee		SI
4080	355	2049	5.78x	7.0%	267	4352	16.33x	11.1%	2.3 × 10 ⁵		0,		100
4096	352	1850	5.25x	6.3%	266	4338	16.30x		1000 C		105		E
16384	357	14222	39.80x	48.5%	259	21333	82.45x	reaction contraction of	2.2 × 10 ⁵		1		ŀ

3. Summary of Findings

Benchmarking on an FPGA prototype demonstrates substantial improvements in performance, highlighting the efficiency of the hardware-accelerated solution.

• Significant speedup of 82x for AES-256-CBC (tested with a 16KiB payload), 39x for SHA-256 (tested with a 16KiB packet digest), and 1.8x for RSA 1024 Encryption. The OpenTitan solution reaches about 50% of the hardware accelerator's maximum performance due to memory inefficiencies and cycle overhead during cryptographic tasks.

These results demonstrate that offloading cryptographic operations to OpenTitan enhances both security and performance, making it a viable solution for secure embedded systems. Future work will focus on extending support to additional TLS cipher suites and improving performance.

EUROPE 2025

12 - 15 May 2025 La Cité des Sciences et de l'Industrie, Paris

[1] Maicol Ciani et al. "Cyber Security aboard Micro Aerial Vehicles: An OpenTitan-based Visual Communication Use Case". In: 2023 IEEE ISCAS. 2023. [2] F. Zaruba et al. "The Cost of Application-Class Processing: Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core in 22-nm FDSOI Technology". In: IEEE VLSI (2019) [3] lowRISC CIC. OpenTitan Official Documentation. https://opentitan.org/book/doc/introduction.html. 2019. [4] Alberto Musa et al. "TitanSSL: Towards Accelerating OpenSSL in a Full RISC-V Architecture Using OpenTitan Root-of-Trust". In: SafeComp 2024, pp. 169–183.