
The compiler is another target for optimization. The CHERI 
LLVM compiler up to this point has focused on correctness and 
not on performance. We are working to re-enable optimization 
passes (taking capabilities into account where necessary) and 
also use the additional functionality and features of CHERI to 
improve code.

For example, if a register is not being used to store a capability, 
then the top XLEN bits can be used to temporarily store the 
contents of another non-capability register, reducing stack 
usage and cache impact.

CHERI Performance Optimization
Carl Shaw

www.codasip.com

What is CHERI? Optimizing C library string functions

String functions, e.g. memcpy(), are an obvious target for 
optimization. CHERI memory copies must preserve capabilities, 
so CHERI capability load and store instructions must be used to 
prevent clearing a validity tag. These instructions allow copying 
of XLEN*2 data bits at a time, increasing throughput.

Optimized string functions on standard RISC-V can deliberately 
load words at a time from memory to improve performance, 
running off the end of a string array. This is not allowed in 
CHERI due to the bounded accesses. Instead, bounds 
information in capabilities pointing to strings must be used to 
determine limits. Again, capability loads can help recover 
performance.

Some example results on X730:

CHERI (Capability Hardware Enhanced RISC Instructions) is a 
memory access protection extension. It extends the RISC-V ISA 
to allow for the replacement of pointers with "capabilities", 
which are protected objects that encapsulate an integer memory 
address along with usage rights. In CHERI these rights include 
the allowed upper and lower memory bounds and access 
permissions. Every memory access is constrained by the 
capability used for each read or write.

The ability to distinguish pointers from integers and constrain 
their memory access can be used to enforce memory safety and 
prevent memory corruption security vulnerabilities, which 
account for up to 70% of all security vulnerabilities.

Capabilities in CHERI-RISC-V double the architectural length of a 
pointer to 2 x XLEN bits plus an additional out-of-band tag bit 
used to enforce validity. Enlarged pointers (stored in double 
width registers) will have an impact on the memory system, 
particularly caches.

Additional instructions also need to be added to software to 
operate on capabilities (e.g. increment or set bounds). These are 
normally added automatically during compilation.

In this poster we present our ongoing software optimization 
work to ensure that CHERI has minimal performance impact.

We use the Codasip X730 64-bit application core instantiated on 
an AMD/Xilinx Ultrascale+ FPGA to measure the impact of CHERI 
and test optimizations. The X730 implements the latest version 
of the proposed Zcherihybrid extension, allowing both CHERI-
enhanced and normal RISC-V code to run and be compared.

To optimize software for CHERI we try to make use of:

• The security provided by CHERI
• The extra information in capabilities
• The extended hardware registers and instructions

The CHERI security properties allow the removal of software 
security mechanisms from applications such as stack-protector 
or shadow stacks that can impact performance by >10% [1]

1Thurston Dang, Petros Maniatos and David Wagner. The Performance Cost of Shadow Stacks and 
Stack Canaries, ASIA CCS '15: Proceedings of the 10th ACM Symposium on Information, Computer 

and Communications Security Pages 555 - 566 

The impact of CHERI-RISC-V

Further information

Methodology

Bounds and permissions Virtual address

XLEN bits XLEN bits

Tag

1 bit

Optimizing for CHERI

Compiler optimizations

Test Unoptimized Optimized

Dhrystone benchmark
(heavy user of strcmp())

-14% 
compared to standard 

RISC-V code

-5%
compared to standard 

RISC-V code

memcpy() 5x faster
than the unoptimized 

CHERI memcpy()

We expect performance to continue to improve as CHERI 
software matures.
 
Our work is being continuously merged into the open-source 
repositories at https://cheri-alliance.org.

Optimized string functions can be re-used in many places. For 
example, as well as adding them to the C library in Linux, we 
also use them within the kernel. We have used the memcpy() 
optimizations to optimize copy_to_user() and 
copy_from_user() to boost Linux performance.

https://dl.acm.org/doi/proceedings/10.1145/2714576
https://dl.acm.org/doi/proceedings/10.1145/2714576
https://cheri-alliance.org/

	Slide 1

