An Open-Source Trusted Execution Environment for Resource-Constrained RISC-V MCUs

Luís Cunha

Daniel Oliveira

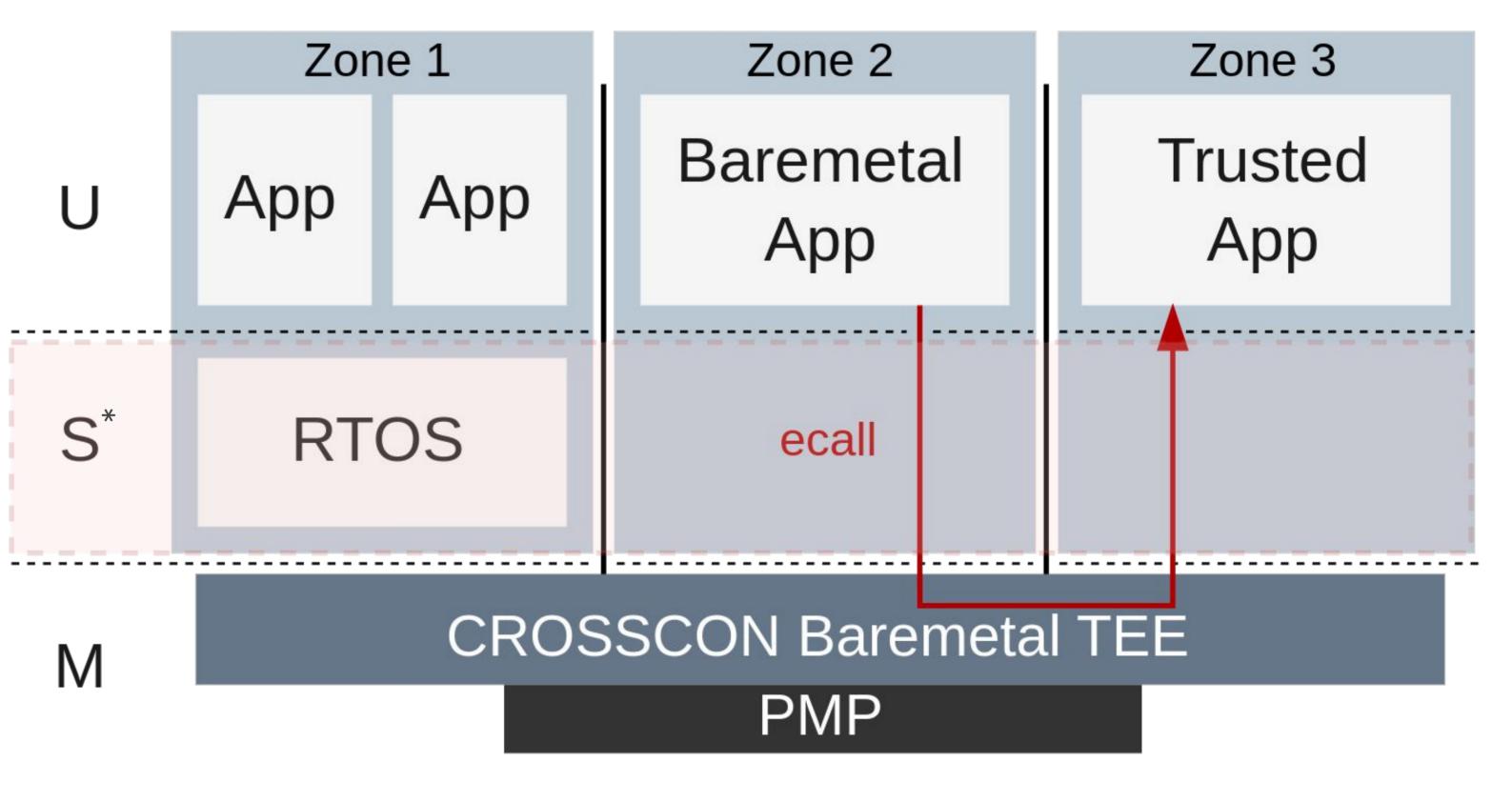
João Sousa

Tiago Gomes

Sandro Pinto

Centro ALGORITMI/LASI - Universidade do Minho

Abstract


This work presents the design and implementation of CROSSCON Baremetal TEE, an open-source Trusted Execution Environment (TEE) targeting resource-constrained RISC-V-based MCUs with support for Machine, (Supervisor,) and User modes. The CROSSCON Baremetal TEE leverages RISC-V's privilege levels and memory isolation primitives to enable multi-world execution while maintaining strong security guarantees at the least privileged level. So far, we have implemented and validated the system on Machine and User mode-enabled cores, running a set of low-level benchmarks and test applications. Future plans include extending the support to the Supervisor mode and open-sourcing all artifacts to foster collaboration within the RISC-V community.

CROSSCON Baremetal TEE Overview

- RISC-V lacks standardized TEE architectures/specifications.
- Proprietary TEEs hinder interoperability and security.
- No clear security guarantees due to the absence of standards.

Proposal:

- **CROSSCON Baremetal TEE**, a novel open-source TEE for resource-constrained RISC-V-based MCUs.
- Enables a multi-world architecture based on the zero-trust model, where only the TEE kernel is trusted.
- Leverages RISC-V ISA privilege levels and PMP for isolation, ensuring a reduced attack surface.
- GlobalPlatform compliant.

*Only M+U implementations currently supported

Status & Evaluation

- We have implemented the proposed solution to run on Machineand User-mode enabled cores.
 - The current implementation was evaluated on a Digilent ARTY7 35T FPGA, running the E300 SoC.

Microbenchmarks

- Analyzed the performance overhead associated with interactions between the executing Worlds.
 - World switch time. Clock cycles required to transition from the last instruction of the calling world to the first instruction of the target world.
- TA-based API. Clock cycles between the CA invoking the API and the execution of the first instruction of the TA's corresponding handler function.
 Primary bottleneck. Overhead associated with saving and

- Initial performance evaluation considers both low-level microbenchmarks and real-world applications.
- As part of the open-source focused CROSSCON project, we plan to release all implementation artifacts

Real-world Applications

- Compare the execution time of the applications running in a bare-metal setup against a setup where security services are isolated within a TA.
- The **keylogger** is based on a reference implementation of a trusted keypad integrated in the Vulcan system.
 - The solution introduced an overhead of 2.73x.
- The **Bitcoin Wallet** is based on an open-source implementation that supports six commands, ranging from master key generation

restoring the full execution context.

to transaction signing.

 \circ The solution introduced an overhead of 1.003x.

World Switch Time		TA-Based APIs			Keylogger		Bitcoin Wallet	
u.d. \rightarrow t.d.	t.d. \rightarrow u.d.	Open Session	Invoke Command	Close Session	Single World	Two Worlds	Single World	Two Worlds
446 cycles	479 cycles	6880 cycles	6782 cycles	1082 cycles	137K cycles	374K cycles (2.73x)	373M cycles	374M cycles (1.003x)

Universidade do Minho

