
RISC-V Summit Europe, Barcelona, 5-9th June 2023 1

Unified Emulation and Simulation Debug Environment for

RISC-V Devices to Reduce Cost and Turnaround Time
Pravin Tavagad, Sharanesh R, Sajosh Janarthanam, Himanshu Suri, Martin Hannon, Rejeesh SB

Ashling Microsystems, Tenstorrent Inc.

Abstract

With increasing design complexity, validating hardware design and software debugger well before tape-out

is essential. Traditional methods for hardware verification, software debugger bring-up, and hardware-

software compatibility are performed on emulation platforms such as Zebu from Synopsys or Palladium from

Cadence using JTAG debuggers. Emulation, while effective for bug discovery with high turnaround time, offers

limited debug visibility compared to simulation. Dependency on physical JTAG Debugger caps the number of

users to hardware availability. This paper describes mechanism to use the same software debugger on

simulation environment too and remove the use of physical hardware debugger. The HW to SW communication

utilizes a synthesizable JTAG transactor integrated into the Emulation environment, which interfaces

seamlessly with the software debugger via TCP/IP sockets (or any other inter-process communication

protocol). This enables issue of software debugger commands to HW, as part of use-case stimuli. The

collaterals for communication and stimuli are used in the simulation environment too, facilitating the rerun of

emulation failures in simulation platform for bug resolution.

Introduction

Successful post-silicon debugging relies on a hardware

and software infrastructure designed to support post-silicon

debug use cases. To ensure readiness, post-silicon debug

use cases must be thoroughly validated in a pre-silicon

environment using the complete hardware and software

stack well ahead of chip tape-out.

RISC-V Debug WG defined specificationError! Reference

source not found. lists support for halting CPUs, accessing

registers and memory, defining triggers for breakpoints,

and tracing instruction retires. These features are exercised

via JTAG debugger from a host CPU running software

debugger.

Traditional methods for hardware design and software

debugger verification on emulation platforms rely on host-

target communication using JTAG debuggers. This paper

presents a verification strategy which enables HW/SW

verification across simulation and emulation platforms to

leverage inherent advantages of each platform. The

verification strategy eliminates the need for physical JTAG

debuggers, enabling seamless scalability by removing

reliance on physical component for hardware-software

debugger communication.

Pre Silicon Verification Requirements

The RISC-V debug ecosystem is evolving, with the

debug specification formally adopted in 2024. The

hardware and associated software debugger supporting this

specification represent first-generation implementations. As

these implementations are in their early stages, they present

challenges such as bugs, specification misinterpretations,

and hardware-software incompatibilities. To ensure

compatibility and accelerate bug detection, the pre-silicon

verification environment must simulate post-silicon use

cases using the software stack. Validating these use cases

across multiple hardware configurations, along with

functional traffic, is critical to minimizing verification

gaps. To expedite bug resolution, the pre-silicon platform

should enable short build times for reruns with bug fixes.

Additionally, the verification environment must scale

effectively, enabling geographically dispersed teams of

verification engineers to run tests remotely.

Emulation platforms excel in bug discovery with high

cycles-per-second (CPS) and debugging capabilities but

face longer build times and limited visibility, challenging

for immature designs. Simulations offer better visibility and

shorter build time but struggle with bug discovery using the

software stacks due to low CPS.

To address pre-silicon verification requirements

effectively, it is crucial to develop a strategy that combines

simulation and emulation platforms, maximizing the unique

strengths of each. An effective verification strategy must

enable bug discovery on emulation and bug reproduction in

simulation while preserving the hardware-software stack

and stimuli across the platforms. All verification

2 RISC-V Summit Europe, Paris, 12-15th May 2025

components and stimuli must be compatible for both

simulation (E.g., Synopsys VCS) builds and emulation

(E.g., Synopsys Zebu) builds.

Here is a typical emulation setup for debug verification

with JTAG debugger.

Figure 1: Emulation Setup with Physical JTAG

Debugger

The following aspects of traditional emulation platform

impede a seamless verification strategy across simulation

and emulation platforms.

a) Scale: Host to target communication is over a

physical JTAG debugger. The maximum number

of simultaneous users is capped by availability of

physical JTAG debuggers.

b) Reuse: Software debugger commands from the

host are part of the stimuli. However, there is no

direct path to replicate these use-cases in a

simulation environment, making it difficult to

maintain consistent stimuli across platforms - a

critical requirement for using simulation as a bug

reproduction and root-cause analysis platform.

Scalable Platform Agnostic Testbench

Environment

The testbench, designed to fulfil pre-silicon verification

requirements while overcoming the limitations of

traditional emulation setups, incorporates two key features:

the use of TCP/IP sockets for cross-program

communication and the utilization of command-line

interfaces (CLI) and startup scripts to drive software use-

case stimuli. TCP/IP sockets, along with supporting

software and verification environment features, replace

JTAG debugger functionality, eliminating physical

bottlenecks associated with JTAG debuggers. Commands

from the CLI and startup scripts are consistently used

across both simulation and emulation platforms, enabling

root cause of emulation failures in the simulation

environment.

 The testbench architecture is designed to be

independent of the target implementation. It supports both

the simulation and emulation builds.

Results and Conclusion

Post Silicon use-cases were exercised on Platform

Agnostic testbench. To discover bugs, emulation build was

used as the target in the test bench. Failing emulation tests

with incorrect hardware responses in logs were rerun using

the simulation build. Simulation platform provided faster

path to debug with better design visibility.

Software debugger use-case stimuli, along with

functional traffic in the scalable platform agnostic

environment uncovered implementation bugs, HW-SW

compatibility issues, and spec misinterpretations. Using

common stimuli for simulation and emulation leveraged the

strengths of both platforms. Emulation enabled effective

bug discovery, while simulation expedited root cause

analysis and resolution. Using TCP/IP sockets for software-

to-hardware communication eliminated the need for

physical JTAG Debuggers, removing user limitations tied

to debugger availability.

References

 [1] RISCV Debug Spec: version 1.0.0.

https://github.com/riscv/riscv-debug-spec/releases/tag/1.0.0-rc4

