CVA6 RISC-V PMP Vulnerabilities against FIA

Kévin QUÉNÉHERVÉ[£], Philippe TANGUY[£], Rachid DAFALI[†], Vianney LAPÔTRE[£]

[£]Université Bretagne Sud, UMR6285, Lab-STICC, Lorient, France, firstname.lastname@univ-ubs.fr [†]DGA MI, Bruz, France

Context

The **Physical Memory Protection** (PMP) mechanism, crucial for system security and integrated into TEEs, is vulnerable to Fault Injection Attacks (FIA) [1], such as voltage pulses, electromagnetic pulses, and clock glitching. Nashimoto et al. [2], have shown that **clock glitching** can manipulate PMP configuration registers on RISC-V processors. Although most systems use integrated clocks to complicate direct access, clock glitching remains a key method for **exploring fault vulnerabilities** and designing countermeasures.

CVA6 PMP

- **PMP** secures up to 16 memory regions with access permissions.
- Each region uses two Control Status Registers (CSRs).
- In the CVA6 core, PMP configuration is handled in the *CSR Write* module of the *Commit* stage Figure 1.
- Various addressing modes (NAPOT, TOR, NA4) in pmpaddrN

Figure 1: CVA6 RISC-V Core

Effects of FIA on PMP configuration

2,126 injections modified PMP configuration, enabling write access to protected memory. Figure 4 shows different impact of pmpcfg0 & pmpaddr0 combinations :

- **G1** gathers faults that lead to *complex* effects.
- **G2** gathers faults that impact either pmpcfg0 xor pmpaddr0.
- **G3** gathers faults that impact both pmpcfg0 & pmpaddr0.

Figure 5 shows a **correlation** between fault effects and injection parameters, *Width* and *External Offset*.

- Sensitive zones can be further divided into sub-zones with specific effects.
- Specific effects can be targeted by an attacker.
- External Offset correlates with the instructions in the PMP Library.

The effects of vulnerabilities follow **a structured pattern**, allowing attackers to **fine-tune injections** for precise manipulation of the PMP.

Stronger countermeasures are needed to mitigate targeted attacks.

Figure 4: Observed combinations of fault injection effects in G2 & G3

Figure 5: Types of fault effect on PMP registers Vs. Clock fault injection parameters: Width, Offset and External Offset

Conclusion & perspectives

- Attackers can adjust injection parameters for desired effects.
- Allows targeting **specific instructions** via *External Offset*.
- Analysis of the location of fine-grained fault in the RISC-V pipeline.
- Analysis of the fault effect in **different processor** RISC-V cores.

Bibliography

- [1] H. Bar-El *et al.*, "The sorcerer's apprentice guide to fault attacks," *Proceedings of the IEEE*, 2006.
- [2] S. Nashimoto *et al.*, "Bypassing Isolated Execution on RISC-V using Side-Channel-Assisted Fault-Injection and Its Countermeasure," *IACR Transactions on Cryptographic Hardware and Embedded Systems (TCHES)*, 2021.

