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Abstract

As processor complexity continues to grow and development cycles shorten, agile development becomes essential.
Formal verification ensures design correctness but is labor-intensive and error-prone due to design-specific properties.
Symbolic Quick Error Detection (SQED) avoids manually writing many properties by checking the design-independent,
self-consistency universal property, thereby facilitating agile verification. However, since self-consistency is based on
assertions that expect the processor to produce consistent results between the original and duplicate instructions, it
fails to cover bugs that affect both the original and duplicate instructions, leading to false positives. To address this,
we propose Symbolic Quick Error Detection by Semantically Equivalent Program Execution (SEPE-SQED), which
utilizes program synthesis to find programs (instruction sequences) with equivalent meanings to original instructions.
SEPE-SQED effectively detects the bugs missed by SQED by differentiating their impact on the original instruction
and its semantically equivalent program. In the case study of a RISC-V processor, agile formal verification can improve
productivity by approximately 60 times compared to conventional Formal Property Verification (FPV).

Introduction

Modern processor designs have become significantly more
complex, while supply chain challenges, including global
competition and geopolitical risks, have shortened devel-
opment timelines. This has created major challenges for
formal verification, as traditional methods require exten-
sive manual effort to write design-specific properties, which
are time-consuming and error-prone, hindering processor
development[1].

Recent advancements in agile formal verification, such
as Symbolic Quick Error Detection (SQED)[2, 3], present
new opportunities for tackling these challenges. SQED

utilizes Bounded Model Checking (BMC) to prove that
any instruction sequence up to a certain bound produces
a correct result. It leverages the concept of design self-
consistency to establish a single universal property, which
declares that the outcomes produced by both original
instructions and their duplicates are identical, regardless
of the specific microarchitectural design details. Therefore,
SQED does not require manually writing design-specific
properties. Practical examples have demonstrated that
SQED can efficiently detect many bugs that are otherwise
difficult to detect[2]. However, SQED lacks coverage for
a class of bugs that can affect the execution states of both
the original and duplicate instructions uniformly, leading
to false positives in the verification results[3].

In this paper, we introduce an improved variant of
SQED, named Symbolic Quick Error Detection by Seman-
tically Equivalent Program Execution (SEPE-SQED)[4],
by extending the self-consistency universal property.
Specifically, SEPE-SQED checks that a correctly func-
tioning processor executes the original instruction and its
semantically equivalent program (instruction sequence)

to produce consistent results. In the case of bugs missed
by SQED, their effect on the original instruction and its
semantically equivalent program can vary, leading to a
consistency violation.

Evaluation using an open-source high-performance
RISC-V processor demonstrates that SEPE-SQED suc-
cessfully detects all 33 injected bugs, whereas SQED fails
to identify 13 of them, which results in false positives.
Compared to conventional FPV, agile methods such as
SQED and SEPE-SQED can enhance productivity by
approximately 60 times.

SQED and SEPE-SQED

This type of agile formal verification is based on the combi-
nation of Quick Error Detection (QED) testing technology
and BMC[5]. QED comprises a series of systematic trans-
formations that convert a wide range of existing original
tests into new tests within the QED family. One such
QED transformation is Error Detection using Duplicated
Instructions for Validation (EDDI-V). EDDI-V divides
the processor’s locations, including both the register file
and memory, into two distinct regions: the original space
and the duplicate space, while establishing a unique corre-
spondence between them. At the start of the testing, each
corresponding pair of registers (or memory locations) is
initialized to the same value. EDDI-V then modifies the
test program by duplicating instruction sequences. In the
transformed program, the original instruction sequence
operates on one half of the region, while the duplicate
sequence operates on the other half. In a correctly func-
tioning processor, the architectural state after executing the
original program must remain identical to the state after
executing the corresponding duplicate program. The BMC
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explores the domain of all possible QED tests (within its
bound) to find a counterexample to the following universal
property (i.e., design-independent):

QED-ready ⇒
∧
r∈O

(
r == ∆(r)

)
(1)

where O represents the original space, and, for ex-
ample, considering N general-purpose registers, O ::=

{regs[0], · · · , regs[ N/2 − 1]}, while D denotes the du-
plicate space, D ::= {regs[N/2], · · · , regs[N − 1]}. The
function ∆ represents a bijective mapping from the origi-
nal registers to the duplicate registers, i.e., ∆ : O 7→ D.
QED-ready indicates that both the original program and
the corresponding duplicate program successfully write
back their execution results.

SQED based on the EDDI-V transformation has limi-
tations in terms of bug-type coverage. Specifically, there
exists a class of bugs that can equally affect both the exe-
cution of original and duplicate instructions. For instance,
if the instruction SUB regs[3] regs[1] regs[2] is misdecoded
as ADD regs[3] regs[1] regs[2], it can lead to false positives
(where the processor’s state still is consistent), because
both the original and duplicate instruction perform the ad-
dition operation, allowing this bug to evade detection. To
address this issue, we propose the SEPE-SQED based
on the Error Detection using Semantically Equivalent
Program for Validation (EDSEP-V) transformation, as
illustrated in Figure 1. EDSEP-V transforms the origi-
nal instruction, such as SUB regs[3] regs[1] regs[2], into
the semantically equivalent program {XORI t1 regs[1]
0xfff, ADD t2 t1 regs[2], XORI regs[3] t2 0xfff}. In a cor-
rectly functioning processor, the architectural state after
executing the original program must remain identical to
the state after executing the corresponding semantically
equivalent program. Since the datapath of the original and
semantically equivalent programs differ, false positives are
avoided. Bugs affect only the original instruction (e.g.,
SUB regs[3] regs[1] regs[2] to ADD regs[3] regs[1] regs[2]),
with the semantically equivalent program unaffected.

The transformation rules from the original instructions
to corresponding semantically equivalent programs are
determined by Component-based Counterexample-Guided
Inductive Synthesis (CEGIS)[6]:

∃P : ∀I⃗ , O :
(
P (I⃗) == O

)
⇒

(
ϕorig(I⃗) == O

)
(2)

The semantically equivalent program P is derived through
Satisfiability Modulo Theories (SMT) queries, ensur-
ing that it produces the same output (e.g., destina-
tion operand) when given the same input (e.g., source
operands) as the original instruction ϕorig. To accelerate
synthesis, we propose CEGIS based on the Highest Priority
First (HPF-CEGIS), which dynamically adjusts the priori-
ties of the components and heuristically selects the highest
priority components, achieving a speed improvement 50%.
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Figure 1: SEPE-SQED

Case Study

We choose the open-source RISC-V superscalar out-of-
order processor RIDECORE[7] as the case study to evalu-
ate the efficacy of SEPE-SQED. 33 different logic bugs
from literature[8] and mutations were injected into the
RTL code.

Compared to conventional FPV, agile formal verifica-
tion methods like SQED and SEPE-SQED can enhance
productivity by approximately 60 times. SEPE-SQED

can detect all 33 bugs within one hour, whereas SQED

identified only 20. The 13 missed bugs led to false positives
in SQED checking.
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