AccUnit: Accelerating Unit Level Verification for RISC-V eptOMIEATAL LA
Processors Using FPGA

Chenang Zhu'2", Weidong Li® ", Yungang Bao'-2 and Kan Shi'-2

1 State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
2 University of Chinese Academy of Sciences
3 ShanghaiTech University

Background

Chip Development Process Overview Chip verification is important and difficult

FaHTRXE

University of Chinese Academy of Sciences

LR BERT

ShanghaiTech University

Cost of Bug Fixing
+ |t takes up to 70% of the entire chip design cycle.

Cost
Saved

» As chip development progresses, the cost of fixing bugs increase

exponentially.

FPGA Prototype

[l
. [l
Shift Left | /
% ' ! FPeA
Design Design Module Unit Cevel Design Integration System Level System Level H | Host i N
Spec Partition Design Verification Integration ificati ificati . ! — T = !
S A A A N AR A A AR NN N AR AR AN AN REAEE AN SEEEEEEEEEEEEAEARNRRERREREEEEEEE - H 1
' 1 1 »
] 1 ® i
H i !
Synthesis Place and Route Timing and Power Analysis Design for Testability Tape-out ~Silicon Testing 1 H
= i i
& poor performance A& hard to debug

Figure 1: Cost of Bug Fixes Throughout the Chip Development Process by
Figure 2: Traditional Verification Approaches

The Overall Architecture of AccU » Challenge1: Software simulation suffers from poor performance.
Solution: Leverage FPGA acceleration
i !

» Challenge2: Limited verification infrastructure on FPGAs, like coverage.
(C++ | Python)

Solution: Implement synthesizable coverage

DUTA ol 1
Jd Orver ot I » Challenge3: The potential of FPGA has yet to be fully unlocked.

e Read ref out Checker : . i
Auto Generated [N . Solution: Exploit parallelism
Coverage

II i « Challenge4: Verification depends heavily on manual effort.
e

S Solution: Auto Adaption & Auto-construction

Evaluation Results

Experiment Platform

Figure 3: Overall Architecture of AccUnit

AccUnit is a tool flow for unit-level verification of RISC-V processors » FPGA Board :Virtex UltraScale+ VCU128

AccUnit performs online checking between DUT and reference model * Host Server: AMD Ryzen 5950x 16-core processors

AccUnit(Parallelism=1) 1 5601.2

* DUTs and checkers run on FPGA. AccUnit(Parallelism=2) = 5673.4
. . Software Simulation 430458.7
» Stimuli generators and reference model run on Host.
0 100000 200000 300000 400000 500000
Running time (ms)
Main Features Figure 4: Performance Comparison between AccUnit and Software Simulation
(1,000,000 iterations)
Parallel Verification « AccUnit achieves up to a 79 X performance improvement compared

* Runs multiple < DUT, Ref > model pairs simultaneously. to software simulation using Verilator

» Leverages both FPGA parallelism and host CPU multi-core capabilities. - Double throughput when running 2 < DUT, Ref > pairs in parallel.

» Dynamically adjusts stimuli generator thread counts based on the relative o)
Table 1: Resource Utilization of Coverage Instrumentation

Speeds of the generator and reference model. Module Cov Count LUTs Registers LUTs with Cov Registers with Cov
RAS 73 3043 (0.23%) 2007 (0.08%) 3206 (0.25%) 2072 (0.08%)
Synthesizab|e Coverpoints FTB 629 3167 (0.24%) 2621 (0.10%) 3697 (0.28%) 3175 (0.12%)
Vector 7078 152727 (11.72%) 28143 (1.08%) 168721 (12.94%) 35184 (1.35%)
» Provides real-time coverage data for comprehensive DUT verification. 100
» Supports line, toggle, and ready-valid coverage. 90
~
« Easily configurable during compile time. § ?8
(9]
. 8h 60 Line Coverage
<
Automatic Deployment § 50 Toagle Ripisters
» Adapts drivers and monitors for DUTs and their reference models 8 40 Toggle Ports
. 30
automatically. 2
» Duplicates stimulus generators and <DUT, reference model> pairs for 1 10 100 1000 10000 100000 1000000

parallel verification automatically. Iterations

« Inserts coverpoints into DUTs automatically. Figure 5: Coverage of Vector Module Collected by AccUnit

. . » AccUnit enables real-time coverage collection while maintainin
« Integrates all components into testbench automatically. 9 9

acceptable hardware resource overhead.

" Equal Contribution
Weidong Li finishes this work during internship at Institute of Computing Technology, Chinese Academy of Sciences.

