AccUnit: Accelerating Unit Level Verification for RISC-V Processors Using FPGA

Chenang Zhu^{1,2}*, Weidong Li³*, Yungang Bao^{1,2} and Kan Shi^{1,2}

- ¹ State Key Lab of Processors, Institute of Computing Technology, Chinese Academy of Sciences
- ² University of Chinese Academy of Sciences
- ³ ShanghaiTech University

Background

Figure 1: Cost of Bug Fixes Throughout the Chip Development Process

The Overall Architecture of AccUnit

Figure 3: Overall Architecture of AccUnit

AccUnit is a tool flow for unit-level verification of RISC-V processors

AccUnit performs online checking between DUT and reference model

- · DUTs and checkers run on FPGA.
- Stimuli generators and reference model run on Host.

Main Features

Parallel Verification

- Runs multiple < DUT, Ref > model pairs simultaneously.
- · Leverages both FPGA parallelism and host CPU multi-core capabilities.
- Dynamically adjusts stimuli generator thread counts based on the relative speeds of the generator and reference model.

Synthesizable Coverpoints

- Provides real-time coverage data for comprehensive DUT verification.
- Supports line, toggle, and ready-valid coverage.
- · Easily configurable during compile time.

Automatic Deployment

- Adapts drivers and monitors for DUTs and their reference models automatically.
- Duplicates stimulus generators and <DUT, reference model> pairs for parallel verification automatically.
- · Inserts coverpoints into DUTs automatically.
- · Integrates all components into testbench automatically.

Chip verification is important and difficult

- It takes up to 70% of the entire chip design cycle.
- As chip development progresses, the cost of fixing bugs increase exponentially.

Figure 2: Traditional Verification Approaches

- Challenge1: Software simulation suffers from poor performance.
 Solution: Leverage FPGA acceleration
- Challenge2: Limited verification infrastructure on FPGAs, like coverage.
 Solution: Implement synthesizable coverage
- Challenge3: The potential of FPGA has yet to be fully unlocked.
 Solution: Exploit parallelism
- Challenge4: Verification depends heavily on manual effort.
 Solution: Auto Adaption & Auto-construction

Evaluation Results

Experiment Platform

Module Cov Count

- FPGA Board :Virtex UltraScale+ VCU128
- · Host Server: AMD Ryzen 5950x 16-core processors

Figure 4: Performance Comparison between AccUnit and Software Simulation (1,000,000 iterations)

- AccUnit achieves up to a 75× performance improvement compared to software simulation using Verilator.
- Double throughput when running 2 < DUT, Ref > pairs in parallel.

Table 1: Resource Utilization of Coverage Instrumentation

LUTs with Cov

2 (0.08%) 5 (0.12%)
84 (1.35%)
rage
sters
S

Figure 5: Coverage of Vector Module Collected by AccUnit

 AccUnit enables real-time coverage collection while maintaining acceptable hardware resource overhead.

^{*} Equal Contribution