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Abstract

Transient-execution attacks continue to plague the computer hardware industry. Recent attacks show that they
can leak sensitive information on many processors of Apple’s M chip series. These attacks cannot only target
conventional systems, but also secure architectures, e.g., CHERI-enhanced processors. The CHERI capability
instruction-set extension promises proven architectural guarantees for memory safety and pointer provenance.
However, superscalar and out-of-order CHERI implementations will need to contend with microarchitectural
transient-execution side-channel attacks. To ensure the safety of all CHERI implementations, we articulate CSC:
a universal architectural speculation contract for the CHERI architecture that maintains key capability invariants
in speculation. We then develop tests against sub-classes of CSC, and discover violations in CHERI-Toooba
that lead to a new class of transient-execution attacks. We then develop strategies to fully enforce CSC in
CHERI-Toooba. We find that simplistic, strong enforcement incurs a low performance overhead of only 3.43%
in SPECint2006 benchmarks, with promise for more optimal designs in the future.

Introduction

Despite transient-execution attacks being identified on
Intel, AMD, and some Arm cores in 2018, the majority
of the recent Apple M series processors are vulnera-
ble to a recently discovered set of transient-execution
attacks [1]. The speculation features causing these
attacks are not specific to Apple processors, but can
be commonly found on industry processors including
RISC-V implementations. Secure architectures are
an emerging field and see increasing interest within
RISC-V. A prominent example is CHERI, which is
currently on the path to be ratified1 as an extension
in RISC-V.
CHERI (Capability Hardware Enhanced RISC In-

structions) extends instruction sets with unforgeable,
bounded pointers [2]. CHERI instruction sets con-
strain each memory access to the intended object.
Since 2017, researchers have repeatedly demonstrated
transient-execution attacks bypassing traditional ar-
chitectural security mechanisms such as privilege rings
and address space separation, and also specialized se-
curity architectures such as pointer authentication and
enclaves [3]. It is abundantly clear that superscalar,
out-of-order CHERI implementations will need to con-
sider how to maintain CHERI guarantees in the face
of transient-execution attacks.

A Capability Speculation
Contract

To ensure safe, high-performance CHERI implemen-
tations, we must define an architectural contract for

1 Specification draft: https://github.com/riscv/riscv-cheri

safe speculation with CHERI capabilities. In CHERI,
bounds and permissions checks must not only be safe in
non-faulting, in-order execution, but also in transient,
faulting execution. CHERI invariants include:

• CHERI capabilities are unforgeable; capabilities
are derived only from capabilities of greater or
equal privilege.

• Memory can be addressed only through a capa-
bility describing and authorizing access to that
address.

The first requirement is naturally enforceable in spec-
ulation, as pipelines generally forward values that are
legitimately calculated from register state. The second
requirement is also naturally enforceable, as capabil-
ity metadata is bundled with the address and can be
verified before issuing requests to memory. These two
requirements together give rise to a powerful emergent
property we call the Capability Speculation Contract
(CSC):

Capability Speculation Contract (CSC)

All instruction and data-memory accesses issued
in speculation must be authorized by capabilities
either:

1. in the committed register file;
2. in memory transitively reachable through 1.

In other words, a CHERI processor should act – even
in speculation – only with rights transitively reachable
from its architecturally committed register file. CSC
does not forbid speculation on capabilities, but it does
forbid using speculatively manipulated capabilities
that cannot be found in the architectural register file
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and its transitive closure. CSC obviates side-channel
concerns by preventing memory accesses to illegal
addresses from being issued. This approach prevents
illegal data from entering the core before it might be
exfiltrated by a side-channel.

Hardware Verification

In order to test RISC-V CHERI processors, we have
developed a test generator that targets CSC violations.
This generator arranges for the data-cache miss counter
to indicate accesses not authorized by capabilities in
the committed register file. Each sequence starts with
a full reset, which clears all caches. A prelude then
prepares a capability granting access to a single word
of memory, and loads that word. Henceforth, any
cache misses will indicate a memory access not allowed
by this capability. A random stream of capability
instructions is then fed to the processor, followed by
a read of the data-cache miss counter. If the counter
shows unexpected misses, a violation is reported. The
generator finds multiple different counterexamples of
which the following is most egregious:

lb r11 , c10 [ 0 ]
cb ld c10 , c12 , c13
lb r11 , c10 [ 0 ]

While the first lb is waiting to commit, cbld transiently
constructs a valid capability from an untagged value
and loads through that capability. The load through
the forged capability will miss the L1 data cache and
thus increase the miss counter indicating a violation.

Mitigation Techniques

Apart from the violations discussed above, our gen-
erators also found violations caused by speculative
PCCs (Program Counter Capabilities), which lead to
dangerous attack scenarios. If we allow only those in-
structions to execute that lie within the PCC written
by the latest-executed branch, then an implementa-
tion will comply with CSC. We call this implementa-
tion strategy SinglePCC. We removed bounds from
all program-counter state everywhere in the pipeline
and replaced them with a single PCC register. Any
logic in the pipeline that needs the complete PCC
simply appends the bounds from the PCC register to
the current instruction address, thus speculating that
the bounds of PCC have not changed. Any jump to
a capability with different bounds will trigger a flush
at the Commit stage to ensure all older instructions
commit with the correct bounds. We verified that
this design eliminates known instruction-related CSC
vulnerabilities using our generators.
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Figure 1: SPECint2006 cycle overhead of Morello bounds
forwarding and CHERI-Toooba with SinglePCC over full-
prediction baseline.

We compare with Arm’s Morello prototype imple-
mentation of CHERI, which takes a version of the
bounds-forwarding approach, but in a superscalar
out-of-order pipeline. Unfortunately, PCC readers
in Morello must block until the previous jump is exe-
cuted, causing delay in many common cases.

Figure 1 compares the cycle overhead of SinglePCC,
which fully enforces instruction-CSC, against Morello’s
bounds forwarding.

Conclusion

We have articulated the Capability Speculation Con-
tract (CSC) that precludes transient-execution attacks
against CHERI protection, and have demonstrated
complete enforcement at a 3.43% performance loss in
a superscalar, out-of-order implementation, with hope
for further optimizations in the future. Our discovery
of CSC violations in the CHERI-Toooba implementa-
tion, resulting in the Meltdown-CF vulnerability, is
ample proof that such a clearly defined and testable
contract is necessary to develop safe superscalar out-
of-order CHERI processors. This work has paved the
way for a standardized RISC-V CHERI extension (rat-
ification pending) to encourage implementations that
are safe from Meltdown-CF.
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