
200

7

function solve_CG(A::Matrix{Float64},
b::Vector{Float64},
tol::Float64=1e-12; max_iter::Int=Int(1e5)
)

n = length(b)
x = zeros(n) # Initial guess
r = b - A * x # Initial residual
p = copy(r) # Initial search direction
r_norm = norm(r)
for iter in 1:max_iter

matrix-vector multiplication
Ap = A * p
vector-vector operations
alpha = dot(r, r) / dot(p, Ap)
x += alpha * p
r -= alpha * Ap

new_r_norm = norm(r)
if new_r_norm < tol

return x, iter
end
beta = (new_r_norm / r_norm)^2
p = r + beta * p
r_norm = new_r_norm

end
return x, max_iter
end

RISC-V based GPGPU on FPGA:

A Competitive Approach for Scientific Computing ?

E. Guthmuller1, J. Fereyre1

Motivation

Targeted Platform: AMD Alveo V80

1 Univ. Grenoble Alpes, CEA, LIST, 38000 Grenoble

Fig 1. Example of a typical HPC kernel:

Congugate Gradient (CG) iterative solver.

Platform & Architecture

Fig 2. SpMV throughput on Nvidia P100

E. Guthmuller & J. Fereyre

CEA List

eric.guthmuller@cea.fr

10000
Nvidia P100 Peak FLOPS

Source: Hong, et al. 2018

<1% of max FLOPS

Kernel Operation Max GFLOPS

DOT ∝= 𝑥 ∙ 𝑦 205

AXPY 𝑦 =∝ 𝑥 + 𝑦 68

SCAL 𝑥 =∝ 𝑥 102

SpMV 𝑦 = 𝐴𝑥 135

Fig 3. Roofline model of linear algebra kernels

for 820 GB/s memory

GPUs have enabled supercomputers to exceed

exaFLOP performance.

But AI is driving GPU architecture evolutions,

needing only low precision computing.

 How long before 64b support in GPUs is

dropped or emulated?

Typical scientific computing kernel needs 64b

floating point support but exhibits low arithmetic

intensity and performance is limited by memory

throughput.

FPGAs now provide hardened arithmetic units,

Network-on-Chips (NoC) and memory controllers,

including High Bandwidth Memory (HBM).

While dedicated architectures or CGRAs may better

exploit FPGA fine-grained architecture, GPGPUs are

easier to program and already exploited in existing

code.

 Would it be possible to implement a GPGPU

on FPGA maximizing HBM throughput, and

thus being competitive with ASIC GPUs?

32 GB of HBM, 820 GB/s

32 GB of DDR4, 26 GB/s

PCIe 5.0 16x, 128 GB/s

128 GB/s VNoC

256 GB/s HNoC

Config LUTs FFs RAM

small

RAM

big

DSP Freq Peak

FP32

4 cores 5% 3% 4% 0% <1% 300 MHz 10 GFLOPS

56 cores 70% 39% 39% 0% 4% 282 MHz 126 GFLOPS

AMD Versal

HBM XCV80

2.5 M - 132 Mb 541 Mb 10.8 K ~800 MHz 17.5 TFLOPS

Vortex FPGA Implementation

Early Results

Fig 4. AMD Alveo V80 main features and organization

Fig 5. Vortex architecture with 1 to 14 clusters connected to NoC

Fig 6. Post-route FPGA floorplan with 14 clusters (colored)

Fig 7. Implementation results

• Mapping up to 56 Vortex cores on

Alveo V80

• Up to 224 FMA lanes (Single

Precision)

• 4 wavefronts per core

• No SLR crossing

• Max frequency stable at ~300 MHz

even with high utilization

• OpenCL driver developed over

AMD PCIe QDMA driver

Future works

• HW support for double precision (FP64) operations

• HPC benchmarks: Linpack and HPCG

• Optimized memory subsystem to exploit HBM bandwidth

Vortex is an opensource RISC-V based GPGPU (https://github.com/vortexgpgpu/vortex).

