
Enabling Syscall Interception on RISC-V
Petar Andrić, Aaron Call, Ramon Nou

Barcelona Supercomputing Center

Abstract

The European Union’s technological sovereignty strategy centers around the RISC-V Instruction Set Archi-
tecture, with the European Processor Initiative leading efforts to build production-ready processors. Focusing
on realizing a functional RISC-V ecosystem, the BZL initiative (www.bzl.es) is making an effort to create a
software stack along with the hardware. In this work, we detail the efforts made in porting a widely used syscall
interception library, mainly used on AdHocFS (i.e., DAOS, GekkoFS), to RISC-V and how we overcame some
of the limitations encountered.

Introduction and motivation

The RISC-V Instruction Set Architecture (ISA) is
at the core of the European Union’s technological
sovereignty plans. A key initiative supporting this goal
is the European Processor Initiative (EPI) [1], which
aims to develop processors based on the open-source
RISC-V ISA for mass production. These processors
are intended for various applications, including cloud
computing and data centers.

One of the storage innovations of the last years
has been the ephemeral storage system [2]. Those
storage file systems use local resources to create a
fast distributed file system that can be used to cope
with the limitations of the general parallel file system.
Those big storage systems suffer from interference [3]
from the high number of jobs, users, and workloads
that use them. Having a virtual file system capable of
overcoming these limitations for the running job is a
way to increase the storage efficiency of new systems
and applications.

However, having an alternative file system on an
HPC computer is not an easy task. Normally, we need
permissions that are higher than those of the normal
user, and system administrators limit such opportuni-
ties. To solve that, ephemeral file systems tend to use
interception systems, libc interception being the most
standard. Libc interception has some limitations, like
reduced compatibility as we need to implement all the
libc calls using a file system. Finally, if the applica-
tion or other libraries bypass libc, adding extra calls
becomes very difficult and hard to debug. To circum-
vent this, Intel1 developed a syscall intercept library
that dynamically patches the binaries and modifies the
system calls. This opens the opportunity to call pre-
and post-operations and reimplement them at the user
level, resulting in the creation of high-performance file
systems on top.

In this poster, we explain our work to enable the

1 https://github.com/pmem/syscall_intercept

syscall intercept library on top of RISC-V hardware2,
following the previous efforts to port it to ARM (by
RIKEN1) and to port it to PowerPC by our institu-
tion3.

Implementation

The implementation on x86, PowerPC, and ARM archi-
tectures differs significantly from the one on RISC-V.
Therefore, the obstacles, the solution, and the trade-
offs are described in this section.

Obstacles

1. The relative jump instruction (jal) has a reach
of ±1MiB, which is insufficient to jump out of
libc. In contrast, x86’s jmp can reach ±2 GiB, and
PowerPC’s b covers ±32 MiB.

2. RISC-V instructions are naturally better aligned,
so nops are rarely present in libc. This eliminates
the possibility of using nop-trampolines.

3. The Linux kernel on RISC-V saves the full context
during interrupts, including caller-saved registers.
This is relevant for indirect jumps, since a caller-
saved register cannot be safely overwritten.

Constraints (1) and (2) necessitate the use of an indi-
rect jump sequence (auipc + jalr). Due to constraint
(3), the calling convention must be preserved. An indi-
rect jump requires 8 bytes, plus an additional 8 bytes
(if compressed instructions, RVC, are supported) for
the prologue and epilogue to store and load the register
used for the jump. Creating a 16-byte patch requires
four to seven relocatable instructions4, depending on
the level of compression. In contrast, x86 requires 5
bytes when using a long jmp, or only 2 bytes when
using a short jmp combined with a nop-trampoline. As
a result, creating a patch involves replacing only one
to three instructions.
2 https://github.com/GekkoFS/syscall_intercept/tree/riscv
3 https://github.com/GekkoFS/syscall_intercept/tree/powerpc
4 Position-independent instructions that can be safely relocated.

1

https://github.com/pmem/syscall_intercept
https://github.com/GekkoFS/syscall_intercept/tree/riscv
https://github.com/GekkoFS/syscall_intercept/tree/powerpc


Solution

As discussed in subsection Obstacles, each ecall must
be surrounded by a sufficient number of relocatable
instructions to accommodate a 16-byte patch. This
requirement is not always met, for example, some
ecalls are surrounded by only a single compressed
relocatable instruction, yielding just 6 bytes of usable
space. The solution is to treat a nearby ecall with
sufficient surrounding space as a gateway, enabling
redirection from less spacious locations. Consequently,
patches are classified into three types based on the
amount of available patch space. The three patching
methods are:

1. Gateway Patch: Applied when an ecall is sur-
rounded by many relocatable instructions. It
creates approximately5 a ±2GiB jump using
auipc+ jalr, serving as the foundation for the
library. Smaller patches jump to these gateways
to reach the syscall_intercept library.

2. Middle Patch: Applied when a sufficient number
of relocatable instructions are available to preserve
the calling convention. It uses jal ra, <gateway
address> to jump to the gateway, where it gets
“forwarded” to the syscall_intercept library.

3. Small Patch: Applied when there is not enough
space to preserve the calling convention. During
the disassembly phase at program runtime, the
syscall number (i.e., the immediate value that sets
the register a7) is extracted through static analy-
sis and stored in the patch structure. This makes
it possible for jal to overwrite a7, since its origi-
nal value is later restored inside syscall_intercept.
The patch uses jal a7, <gateway address> to
jump to the gateway, where it gets redirected to
the syscall_intercept library.

Patch distribution is approximately 40% Gateway,
45% Small, and 15% Middle, varying by libc version.

This system ensures that all syscalls are intercepted
by redirecting them to a shared entry point within
syscall_intercept, namely the asm_entry_point as-
sembly routine. While other architectures jump di-
rectly to an allocated space outside syscall_intercept,
the RISC-V implementation must dynamically identify
each patch based on its unique return address. Once
identified, execution is forwarded to the corresponding
relocated instruction stored within syscall_intercept.

Trade-offs

Instead of having each patch jump directly to its dedi-
cated location, all patches are redirected to a shared
entry point, where they are dynamically identified.

5 Due to the 2’s complement bias, the exact range is from
-0x80000800 to 0x7ffff7fe, differing by 4KiB.

This design slightly increases runtime overhead but
significantly reduces memory usage and improves cache
locality. For more information, check the Overhead
section.

Differences between the RISC-V
and the x86 version

The RISC-V version introduces several improvements
and differences compared to the x86 version:

1. Return Values: The syscall_no_intercept()
function returns a structure containing values
from both the a0 and a1 registers, the two stan-
dard syscall return values. In contrast, the x86
version returns only the primary value (stored in
the rax register).

2. Thread Interception: The RISC-V version inter-
cepts all threads (i.e., all clone() variants) and
logs their results, including those with separate
stack spaces. The x86 version does not log results
for such threads.

3. Post-clone Hooks: On RISC-V, post-clone hooks
are triggered for every thread creation. On x86,
these hooks are only triggered for threads with
separate stack spaces.

4. Patching Types: The RISC-V version implements
three patch types—Gateway, Middle, and Small—
which differ in required patching space and the
method used to jump to the syscall_intercept
library.

5. Patching Logic: The patching logic for RISC-V is
adapted to the limited range of the jal instruction
and the absence of nop-trampolines. Additionally,
the Linux trap handler on the RISC-V preserves
the full register context, requiring explicit save
and load operations for the jump register. On x86,
the Linux kernel does not preserve caller-saved
registers, allowing them to be safely overwritten.

Overhead compared to x86

Execution Time Overhead

To evaluate the execution time overhead of the imple-
mentation, three distinct cost scenarios are analysed:

1. Normal: The cost of executing the standard libc
function (e.g., getpid()) without interception.
These measurements serve as the baseline refer-
ence for overhead calculations.

2. Intercepted Cost (User Mode): The cost of exe-
cuting the intercepted libc function when the cor-
responding syscall is bypassed. Since the Linux

2



kernel is not called to execute the syscall, this
results in a negative overhead.

3. Intercepted Cost (Kernel Mode): The cost of
executing the intercepted libc function with a call
to the corresponding syscall. The overhead in this
case is positive, due to the complexity of patching
libc and the added indirection to reach the Linux
kernel.

The test results are as follows: On x86, a median
overhead of -70% for (2) compared to (1), and a median
of 2% for (3). On RISC-V, the overhead is -35% for (2),
and 5% for (3). However, these results are dependent
on the execution platform, which in our case includes
an i7-8650U x86 CPU (4 cores) from Dell Latitude
and a TH1520 RISC-V CPU (4 cores) from Lichee PI
4A.

Memory usage

Regarding memory usage, the RISC-V implementa-
tion has a significantly smaller footprint, reduced from
1.37MiB to 192KiB, representing only 13.6% of the
x86 usage. This figure does not account for the inher-
ently more compact nature of the RISC-V ISA. The
reduction comes from the following:

• x86 allocates 1 MiB for templates6 and relocated
instructions, whereas RISC-V requires only 128
KiB for relocated instructions.

• x86 allocates 256 KiB for the absolute jump tram-
polines, while RISC-V uses one trampoline with
a maximum size of 24 B.

• The bitmap jump table is half the size on RISC-V
due to its minimum instruction alignment of two
bytes, ≈64 KiB over ≈128 KiB.

This reduced memory footprint and improved lo-
cality of frequently used code could enhance cache
efficiency.

Memory usage on RISC-V scales more favourably.
Other architectures allocate memory for a template,
relocated instructions, and a dedicated trampoline
(i.e., an absolute jump trampoline) for each patch. In
contrast, RISC-V leverages a single shared entry point
and a shared trampoline. As a result, memory usage
scales linearly with the number of patches on RISC-V
as O(n), while x86 scales approximately as O(10n).

Current status and next steps

The library is fully functional and is a cost-free replace-
ment for the original library. The next steps include
reducing the version gap, particularly by implement-
ing all the missing test cases. A more interesting
6 A set of instructions executed before and after entering the C

part of syscall_intercept where user-defined hooks are.

direction, however, could be to implement a filter that
reduces modifications to unused syscalls, tailored to
the specific destination use case. For example, in the
case of AdHocFS, we could focus on patching only the
I/O-related syscalls.

Acknowledgements
This project is promoted by the Ministry for Digital Transformation and
the Civil Service, within the framework of the Recovery, Transformation and
Resilience Plan - Funded by the European Union - NextGenerationEU. This
work has been partially financed by the European Commission (EU-HORIZON
VITAMIN-V GA 101093062). The work carried out in this article was achieved
with the support of RISC-V International in their mentorship program, with
the participation of Ramon Nou (BSC) as mentor and Petar Andrić as Mentee.

References

[1] Mario Kovač. “European Processor Initiative: The In-
dustrial Cornerstone of EuroHPC for Exascale Era”. In:
Proceedings of the 16th ACM International Conference
on Computing Frontiers. CF ’19. Alghero, Italy: Asso-
ciation for Computing Machinery, 2019, p. 319. isbn:
9781450366854. doi: 10 . 1145 / 3310273 . 3323432. url:
https://doi.org/10.1145/3310273.3323432.

[2] André Brinkmann et al. “Ad Hoc File Systems for High-
Performance Computing”. In: Journal of Computer Sci-
ence and Technology 35.1 (2020), pp. 4–26. doi: 10.1007/
s11390-020-9801-1. url: https://www.sciopen.com/
article/10.1007/s11390-020-9801-1.

[3] Chris Egersdoerfer et al. “Understanding and Predicting
Cross-Application I/O Interference in HPC Storage Sys-
tems”. In: SC24-W: Workshops of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis. 2024, pp. 1330–1339. doi: 10.1109/
SCW63240.2024.00174.

3

https://doi.org/10.1145/3310273.3323432
https://doi.org/10.1145/3310273.3323432
https://doi.org/10.1007/s11390-020-9801-1
https://doi.org/10.1007/s11390-020-9801-1
https://www.sciopen.com/article/10.1007/s11390-020-9801-1
https://www.sciopen.com/article/10.1007/s11390-020-9801-1
https://doi.org/10.1109/SCW63240.2024.00174
https://doi.org/10.1109/SCW63240.2024.00174

	Introduction and motivation
	Implementation
	Obstacles
	Solution
	Trade-offs

	Differences between the RISC-V and the x86 version
	Overhead compared to x86
	Execution Time Overhead
	Memory usage

	Current status and next steps

