
www.bzl.es

Este proyecto se impulsa por el Ministerio para la Transformación Digital y de la Función Pública, en el marco del Plan de Recuperación, Transformación
y Resiliencia – Financiado por la Unión Europea – NextGenerationEU

Enabling Syscall Interception on RISC-V
Petar Andrić, Aaron Call, Ramon Nou

Barcelona Supercomputing Center

This project is promoted by the Ministry for Digital Transformation and the Civil Service, within the framework of the Recovery, Transformation, and Resilience Plan - Funded by the European Union - NextGenerationEU

(reference REGAGE22e00058408992). This work has been partially financed by the European Commission (EU-HORIZON VITAMIN-V GA 101093062). The work done in this paper was achieved with the support of RISC-V International

in their mentorship program, with the participation of Ramon Nou (BSC-CNS) as mentor and Petar Andrić as Mentee.

In AdHocFS, the library reduces the number
of required hooks, improving compatibility
with libc interception. Separate hooks for
different stat() or open() variants are
unnecessary. It also enables interception of
applications that bypass libc, which would
otherwise be difficult to handle and debug.

Use case: GekkoFS

User Space

Application Process

Application

Libc Functions

Syscall Interface

Syscall Interception Point

AdHocFS Client – Syscall Interceptor

Network/IPC to
GekkoFS Server

AdHocFS
Client Logic

Kernel
Syscall
Handler

YES
(Virtual Mount Point)

NO
(Normal Patch)

The European Union’s technological sovereignty strategy centers around the RISC-V Instruction Set Architecture, with
the European Processor Initiative leading efforts to build production-ready processors. Focusing on realizing a
functional RISC-V ecosystem, the BZL initiative from Spain is making an effort to create a software stack along with the
hardware. In this poster, we detail the efforts made in porting a widely used syscall interception library, mainly used on
AdHocFS (i.e., DAOS, GekkoFS), to RISC-V and how we overcame some of the limitations encountered.

syscall_intercept library:
https://github.com/GekkoFS/syscall_intercept/tree/riscv

GekkoFS:
https://storage.bsc.es/gitlab/hpc/gekkofs

We analyze three distinct cost scenarios:

● Normal: The cost of executing the standard libc
function (e.g., getpid()) without interception.
These measurements serve as the baseline
reference for the overhead charts on the left.

● Intercepted Cost (User Mode): The cost of
executing the intercepted libc function when the
corresponding syscall is bypassed. Since the Linux
kernel isn't called to execute the syscall, the
overhead is negative in the chart on the left.

● Intercepted Cost (Kernel Mode): The cost of
executing the intercepted libc function with a call to
the corresponding syscall. In this case, the chart
shows a positive overhead due to the complexity of
patching libc and the added indirection to reach the
Linux kernel.

Overhead

Platforms: TH1520 RISC-V CPU (4 harts) from Lichee PI 4A
i7-8650U x86 CPU (4 harts) from Dell Latitude

Intercepted Cost (User Mode)

Intercepted Cost (Kernel Mode)

Basic examples of patch types

 • Case when a register gets set after the ecall:
a13ea: jal a7, <GW addr offset>

 • Case when no register gets set after the ecall:
a13ea: jal a7, <GW addr offset>
a13ec: li a7, <syscall number>

f7de0: addi sp, sp, -48
f7de2: sd ra, 0(sp)
f7de4: auipc ra, <offset>
f7de8: jalr ra, <offset>(ra)
f7dec: ld ra, 0(sp)
f7dee: addi sp, sp, 48

Obstacles
1. The relative jump instruction (jal) has a ±1 MB

reach which is not enough to jump out of libc,
unlike x86's jmp (±2 GB) or PowerPC (±32 MB).

2. Instructions are naturally better aligned, so nops
are rarely present in libc, eliminating the
possibility of using nop-trampolines.

3. The Linux kernel on RISC-V saves the full
context during interrupts, including caller-saved
registers. This is relevant for indirect jumps
because no register can be overwritten.

These constraints required the use of an indirect
jump sequence (auipc + jalr), and the calling
convention must be preserved. This sequence
requires 8 bytes, plus prologue/epilogue, totalling
16 B when RVC is supported. x86 requires only 5
or 2 B (with nop-trampoline).

Solution
Three patching methods:
1. Gateway Patch: Applied when an ecall is

surrounded by many relocatable instructions. It
creates a ±2 GB jump, serving as the foundation
for the library. Smaller patches jump to these
gateways to reach the syscall_intercept library.

2. Middle Patch: Applied when a sufficient number
of relocatable instructions are available to
preserve the calling convention. It jumps with jal
to the gateway, where it gets “forwarded” to the
syscall_intercept library.

3. Small Patch: Applied when there is not enough
space to preserve the calling convention. Static
analysis stores the syscall number (a7) in the
patch’s structure, allowing jal to overwrite it, as
its value is restored later inside the library.

Approximately, libc is patched with 40% Gateway,
45% Small, and 15% Middle patch types.

Trade-offs
Less memory is allocated per patch because the
library uses an indirect patching approach. Instead
of each patch jumping to its own location, all patches
redirect to a shared entry point, where they are
dynamically identified. This design slightly
increases runtime overhead (see Overhead), but
significantly reduces overall memory usage.

Implementation

e5fa4: addi sp, sp, -48
e5fa6: sd ra, 8(sp)
e5fa8: jal ra, <GW addr offset>
e5fac: ld ra, 8(sp)
e5fae: addi sp, sp, 48

